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The solutions for this sheet are submitted on Moodle until 1 December 2024, 23:59.

Exercises that are marked by ∗ are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 10.1 Shortcutting closed Eulerian walks (1 point).

Let G = (V,E) be the complete graph meaning we have an edge set E equal to all possible edges
between distinct vertices. Furthermore, there is a weight function w : E → R≥0 on the edges which
satisfies a ‘metric’ property: for any distinct u, v, w ∈ V we havew({u,w}) ≤ w({u, v})+w({v, w}).
Given a sequence of edgesC = (e1, . . . , ek)which form a cycle inG, the weight of this cycle is defined
as w(C) =

∑k
i=1w(ei).

Now consider another graphH = (V, F )which has the same vertices asG. Furthermore, we can create
a weight function w′ : F → R≥0 compatible with w meaning for each f ∈ F , if f ’s endpoints are u
and v then w′(f) = w({u, v}).

Suppose that H is connected and has a closed Eulerian walk denoted by a sequence of edges T =
(e1, . . . , ek). The weight of the walk is defined as w′(T ) =

∑k
i=1w

′(ei). Describe an algorithm that
takes a closed Eulerian walk T of H and produces a Hamiltonian cycle C in G with weight at most
that of the closed Eulerian walk, meaningw(C) ≤ w′(T ). Your algorithm should have runtimeO(|F |).
Argue why your algorithm is correct and why it satisfies the runtime bound.

Exercise 10.2 Breadth-first search (1 point).

Execute a breadth-first search (BFS) on the following graph G = (V,E) starting at vertex A using the
algorithm you have seen in the lecture, which updates a queue Q.

You should always enqueue the neighbours of a vertex in alphabetical order.
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(a) Write down all operations that are executed on the queue Q during the BFS (in order), and write
down the contents ofQ after each operation is executed (in order). For example, the first operation
is enqueue(A) and after this operation, Q = [A]. The second operation is dequeue(A), and after
this operation, Q = [ ].

(b) Give a shortest path tree for G (with root A).

(c) Let Sk := {v ∈ V : dist(A, v) = k}. Write down Sk for k = 0, 1, 2, 3, 4, 5.

(d) An edge e ∈ E is called critical if there is a vertex v ∈ V to which the distance from A increases
after removing e. Write down all critical edges of G.

(e) Write down the enter-number and leave-number of each vertex of the graph. (These numbers
indicate the number of queue-operations that have been executed as a vertex enters (respectively,
leaves) the queue. For example, enter(A) = 0 and leave(A) = 1.)

(f) Let tk := minv∈V {leave(v) : dist(A, v) ≥ k}. Write down tk for k = 0, 1, 2, 3, 4, 5. (We define
min ∅ :=∞.)

(g) Let Rk := {v ∈ V : tk ≤ leave(v) < tk+1}. Write down Rk for k = 0, 1, 2, 3, 4, 5.

Exercise 10.3 Driving on highways.

In order to encourage the use of train for long-distance traveling, the Swiss government has decided
to make all the m highways between the n major cities of Switzerland one-way only. In other words,
for any two of these major cities C1 and C2, if there is a highway connecting them it is either from C1

to C2 or from C2 to C1, but not both. The government claims that it is however still possible to drive
from any major city to any other major city using highways only, despite these one-way restrictions.

(a) Model the problem as a graph problem. Describe the set of vertices V and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

(b) Describe an algorithm that checks the correctness of the government’s claim in time O(n + m).
Argue why your algorithm is correct and why it satisfies the runtime bound.

Hint: You can make use of an algorithm from the lecture. However, you might need to modify the
graph described in part (a) and run the algorithm on some modified graph.
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Exercise 10.4 Number of minimal paths (1 point).

Let G = (V,E) be an undirected graph with n vertices and m edges. Let v, v′ ∈ V be two distinct
vertices and suppose that the distance between the two is k.

Describe an algorithm which counts the number of paths from v to v′ of length k. The runtime of
your algorithm should be at most O(n+m). You are provided with the number of vertices n, and the
adjacency list Adj of G. Argue why your algorithm is correct and why it satisfies the runtime bound.

Hint: Modify BFS.

Exercise 10.5 Shortest paths by hand.

Dijkstra’s algorithm allows to find shortest paths in a directed graph when all edge costs are nonnega-
tive. Here is a pseudo-code for that algorithm:

Algorithm 1 Dijkstra(G, s)

Input: A starting vertex s and a weighted graph G represented via c(·, ·). Specifically, for two
vertices u, v the value c(u, v) represents the cost of the edge from u to v (or ∞ if no such edge
exists).
Operations:
d[s]← 0 ▷ upper bounds on distances from s
d[v]←∞ for all v ̸= s
S ← ∅ ▷ set of vertices with known distances
while S ̸= V do

choose v∗ ∈ V \ S with minimum upper bound d[v∗]
add v∗ to S
for each v ∈ V \ S do

for each u ∈ S do
if c(u, v) <∞ then

d[v]← min{d[v], d[u] + c(u, v)}

We remark that this version of Dijkstra’s algorithm focuses on illustrating how the algorithm explores
the graph and why it correctly computes all distances from s. You can use this version of Dijkstra’s
algorithm to solve this exercise.

In order to achieve the best possible running time, it is important to use an appropriate data structure
for efficiently maintaining the upper bounds d[v] with v ∈ V \ S as you will see in the next lecture. In
the other exercises/sheets and in the exam you should use the running time of the efficient version of
the algorithm (and not the running time of the pseudocode described above).

Consider the following weighted directed graph:
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(a) Execute the Dijkstra’s algorithm described above by hand to find a shortest path from s to each
vertex in the graph. After each iteration of the while-loop, write down:

1) d[u] for all u ∈ V (which are upper bounds on the distances from s to u computed so far),

2) the set S (which contains vertices for which the distance has been correctly computed so far),

3) and the predecessors for each vertex u ∈ S \ {s}. (A predecessor of a vertex u ∈ S \ {s} is a
vertex v ∈ S which satisfies d[u] = d[v] + c(v, u).)

(b) Change the weight of the edge (a, c) from 1 to −1 and execute Dijkstra’s algorithm on the new
graph. Does the algorithm work correctly (are all distances computed correctly) ? In case it breaks,
where does it break?

(c) Now, additionally change the weight of the edge (e, b) from 1 to−6 (so edges (a, c) and (e, b) now
have negative weights). Show that in this case the algorithm doesn’t work correctly, i.e. there exists
some u ∈ V such that d[u] is not equal to the minimum distance from s to u after the execution of
the algorithm.
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