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Exercises that are marked by ∗ are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 12.1 MST practice (1 point).

Consider the following graph.
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(a) Compute the minimum spanning tree (MST) using Boruvka’s algorithm. For each step, provide the
set of edges that are added to the MST.

(b) Provide the order in which Kruskal’s algorithm adds the edges to the MST.

(c) Provide the order in which Prim’s algorithm (starting at vertex G) adds the edges to the MST.

Exercise 12.2 Constructing a Fiber Optic Network.

The government of Atlantis put you in charge of installing a fiber optic network that connects all its n
cities. There are two technologies of fibre optic that you can use:

• Fibre 1.0: It is a good reliable technology that is relatively cheap. There is a list of pairs of cities
between which it is possible to install a direct Fibre 1.0 link. Furthermore, for each such pair,
there is a corresponding positive integer cost.

• Fibre 2.0: It is an emerging technology that is extremely good and can directly connect any two
cities. However, its cost is too high and the government cannot afford a single Fibre 2.0 link.



Note that all direct links are two-directional. The installed network should connect all the cities of
Atlantis: Between any two cities, there should be a connected path of direct links in the network that
connects them.

A philanthropist volunteered to donate the cost of exactly k direct Fibre 2.0 links (k < n), and you
can use them to connect any k pairs of cities. Your goal is to minimize the cost that is paid by the
government for the Fibre 1.0 links that are needed to construct a connected network. Describe an
algorithm that finds the network that costs the government the minimum amount of money.

Note that it is possible to construct a network connecting all the cities of Atlantis using only Fibre 1.0
links, but we would like to benefit from the k Fibre 2.0 links that were donated by the philantropist in
order to minimize the cost that is paid by the government.

Hint: Modify Kruskal’s algorithm.

Exercise 12.3 Exploring connectivity of MSTs (1 point).

In this exercise, we explore connectivity properties of the set of spanning trees and MSTs of a graph
using only ’local’ changes. First we prove whats called the symmetric basis exchange property. Let
G = (V,E) be a connected graph and w : E → R≥0 be a weight function.

(a) Let T1 and T2 be two different spanning trees of G and let e ∈ T1 \ T2. Show that there exists an
edge f ∈ T2 \ T1 such that (T1 \ {e}) ∪ {f} and (T2 \ {f}) ∪ {e} are both spanning trees.

Now consider the graph H = (B, E) where each vertex of H corresponds to a spanning tree of G and
we assign an edge between two vertices of H if their corresponding spanning trees differ by exactly
two edges.

(b) Show that the graph H is connected.

Hint: Repeatedly apply part (a).

(c) Consider the subgraph ofH ,HMST, whose vertices are all MSTs ofG and we keep an edge between
two vertices if, again, the corresponding MSTs differ by two edges. Show that HMST is connected.

Hint: Reuse the proof for (b) but also analyze the weights of the new spanning trees produced by (a).

Exercise 12.4 Maximum Spanning Trees and Trucking.

We start with a few questions aboutmaximum spanning trees.

(a) How would you find the maximum spanning tree in a weighted graph G = (V,E)? Describe an
algorithm with runtime O((|V |+ |E|) log |V |).

(b) Given a weighted graphG = (V,E)with weightsw : E → R, letG≥x = (V, {e ∈ E | w(e) ≥ x})
be the subgraph where we only preserve edges of weight x or more. Prove that for every s ∈ V ,
t ∈ V , x ∈ R, if s and t are connected in G≥x then they will also be connected in T≥x, where T is
the maximum spanning tree of G.

Hint: Use Kruskal’s algorithm as inspiration for the proof.
Hint: If it helps, you can assume all edges have distinct weight and only prove the claim for that case.

Problem: You are starting a truck company in a graph G = (V,E) with V = {1, 2, . . . , n}. Your
headquarters are in vertex 1 and your goal is to deliver the maximum amount of cargo to a destination
t ∈ V in a single trip. Due to local laws, each road e ∈ E has a maximum amount of cargo your truck
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can be loaded with while traversing e. Find the maximum amount of cargo you can deliver for each
t ∈ V with an algorithm that runs in O((|V |+ |E|) log |V |) time. For the purpose of this exercise you
can assume that your truck has unlimited capacity.

Example:
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5 410 Output:
Max cargo to 1 is ∞
Max cargo to 2 is 10

Max cargo to 3 is 8

Max cargo to 4 is 8

Explanation:
The best path from the headquar-
ters to 4 is 1 → 2 → 3 → 4, and
the maximum cargo the truck
can carry is min(10, 8, 10) = 8.

(c) Prove that for every t ∈ V , the optimal route is to take the unique path in themaximum spanning
tree of G.

Hint: Suppose that the largest amount of cargo we can carry from 1 to t in G (i.e., the correct result)
is OPT and let ALG be the largest amount of cargo from 1 to t in the maximum spanning tree. We
need to prove two directions: OPT ≤ ALG and OPT ≥ ALG.
Hint: One direction holds trivially as any spanning tree is a subgraph. For the other direction, use part
(b).

(d) Write the pseudocode of an algorithm that computes the output for all t ∈ V . The runtime of your
algorithm should be O((|V | + |E|) log |V |). You can assume that you have access to a function
that computes the maximum spanning tree from G and outputs it in any standard format. Briefly
explain why the runtime bound holds.

Exercise 12.5 Heavy and light edges (1 point).

Let G = (V,E) be a connected, undirected, weighted graph with positive weights we > 0 for e ∈ E.
We say an edge e ∈ E is heavy if there exists a cycle C ⊆ E so that e ∈ C is the (strictly) heaviest
edge in C , i.e.,

we > wf for all f ∈ C with f ̸= e.

We say an edge is light if there exists a minimum spanning tree T ⊆ E of G which contains e.

(a) Show that a heavy edge cannot be light.

Hint: Assume for a contradiction that T ⊆ E is an MST of G and that T contains a heavy edge e.
Say e is the heaviest edge in a cycle C ⊆ E. Construct a strictly cheaper spanning tree of G by
removing e from T , and replacing it by a different edge f ∈ C .

(b*) Show that an edge which is not heavy, must be light. Conclude that an edge is heavy if and only if
it is not light.

Hint: You may use without proof that Kruskal’s algorithm is correct regardless of the order in
which edges of equal weight are processed.
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