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Exercises that are marked by
∗
are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 5.1 Max-Heap operations (1 point).

(a) Consider the following max-heap:
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Draw the max-heap after inserting the elements 70 and 51 in that order.

(b) Consider the following max-heap:
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Draw the max-heap after two ExtractMax operations.

Exercise 5.2 Guessing an interval.

Alice and Bob play the following game:



• Alice selects two integers 1 ≤ a < b ≤ 200, which she keeps secret.

• Then, Alice and Bob repeat the following:

– Bob chooses two integers 0 ≤ a′ < b′ ≤ 201.

– If a = a′ and b = b′, Bob wins.

– If a′ < a and b < b′, Alice tells Bob ‘my numbers are strictly between your numbers!’.

– Otherwise, Alice does not give any clue to Bob.

Bob claims that he has a strategy to win this game in 12 attempts at most. Prove that such a strategy

cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of Alice’s
answers, while each leaf corresponds to a win for Bob.

Hint: After defining the decision tree, you can consider the sequence k0 = 1 and kn = 2kn−1 + 2 for
n ≥ 1, and prove that kn = 3 · 2n − 2 for any n ∈ N0 = N ∪ {0}. The number of vertices in the decision
tree should be related to kn.

Exercise 5.3 Quick(?) sort (1 point).

Recall the pseudocode for the quick sort algorithm from the lecture:

Algorithm 1 quick sort

1: functionQuickSort(A, ℓ, r)
2: if ℓ < r then
3: k = Partition(A, ℓ, r)
4: QuickSort(A, ℓ, k − 1)
5: QuickSort(A, k + 1, r)

6: function Partition(A, ℓ, r)
7: i← ℓ
8: j ← r − 1
9: p← A[r] ▷ Choose the rightmost entry as pivot

10: repeat
11: while i < r and A[i] ≤ p do
12: i← i+ 1

13: while j ≥ ℓ and A[j] > p do
14: j ← j − 1

15: if i < j then
16: Swap A[i] and A[j]

17: until i > j
18: Swap A[i] and A[r] ▷ At the end, the correct place for the pivot is i
19: Return i

We want to study the number of comparisons between array entries the quick sort algorithm performs

when we apply it to an array A[1 . . . n] consisting of n unique integers which is already sorted in

ascending order (so A[1] < A[2] < . . . < A[n]).
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(a) Show that the number of comparisons T (n) between array entries that QuickSort(A, 1, n) per-
forms when applied to a sorted arrayA as above, and with the above rule to select the pivot satisfies

the recursive relation

T (1) = 0, T (n) = T (n− 1) + (n− 1) ∀n ≥ 2.

You may assume for simplicity that Partition(A, ℓ, r) always performs exactly r− ℓ comparisons

between entries. In your argument, refer to the pseudocode above.

(b) Assume n ≥ 3. Show that T (n) = Θ(n2). To do so, first give an exact expression for T (n) based on
the recursive formula of part (a) (your exact expression does not need to be maximally simplified,

e.g., it is allowed to contain summation-symbols).

Hint: Based on the recursive formula from part (a), how could you write T (n) in terms of T (n− 2)?
How could you write it in terms of T (n− 3)? Repeat this process.

Exercise 5.4 Building a Heap (1 point).

Recall that a binary tree is called complete if all of its layers are fully filled, except possibly the last layer,
which should be filled from left to right. A (max-)heap is a complete binary tree with the extra property

that for any node C with parent P ,

key(P ) ≥ key(C). (heap-condition)

Also recall that for a tree T , the root is at level 0 and the leaves are at level height(T ); for a node at
level ℓ, its children are at level ℓ+ 1.

In this exercise, we formally prove the correctness of the following algorithm from lecture, which

converts any complete binary tree into a heap.

Algorithm 2 Heap Construction

function Heapify(T)

for t = height(T )− 1, . . . , 0 do
for nodes N at level t do

for ℓ = t, . . . ,height(T )− 1 do
C1 ← the left child of N , if no such child exists assign it key −∞.

C2 ← the right child of N , if no such child exists assign it key −∞.

if key(C1) ≥ key(C2) and key(C1) > key(N) then
Swap the keys of nodes N and C1.

N ← C1

else if key(C1) < key(C2) and key(C2) > key(N) then
Swap the keys of nodes N and C2.

N ← C2

else
Exit inner for loop

Let T be a complete binary tree consisting of n nodes with n ≥ 2. Let H be the data structure that

results from executing Heapify(T ).

(a) Prove that the executing Heapify(T ) returns a valid heap.
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Hint: Use the invariant I(t) for 0 ≤ t ≤ height(T ): all nodes from levels height(T ), . . . , t satisfy
the heap condition, namely key(P ) ≥ key(C) where P is the parent node of level at least t, and C is
a child of P .

(b)* Prove that the runtime of executing Heapify(T ) takes time O(n).

You may use the fact that for any k ∈ N

k∑
i=1

i

2i
≤ 2 .

Hint: Write the runtime as an outer sum over the various levels and an inner sum over all the nodes
of that level.

Data structures.

Exercise 5.5 Implementing abstract data types.

In the lecture, you saw how we can implement the abstract data type list with operations insert, get,
delete and insertAfter. In this exercise, the goal is to see how we can implement two other abstract

data types, namely the stack (german “Stapel”) and the queue (german “Schlange” or “Warteschlange”).

The abstract data type stack is, as the name suggests, a stack of elements. For a stack S, we want to
implement the two following operations; see also Figure 1.

• push(x, S): Add x on top of the stack S.

• pop(S): Remove (and return) the top element of the stack S.

x
push

pop

S

Figure 1: Abstract data type stack

The abstract data type queue is a queue of elements. For a queueQ, we want to implement the following

two operations; see also Figure 2.

• enqueue(x,Q): Add x to the end of Q.

• dequeue(Q): Remove (and return) the first element of Q.
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Figure 2: Abstract data type queue

(a) Which data structure from the lecture can be used to implement the abstract data type stack effi-

ciently? Describe for the operations push and pop how they would be implemented with this data

structure and what the run time would be.

(b) Which data structure from the lecture can be used to implement the abstract data type queue effi-

ciently? Describe for the operations enqueue and dequeue how they would be implemented with

this data structure and what the run time would be.
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