Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Zirich Federal Institute of Technology at Zurich

Departement of Computer Science 23 September 2024
Johannes Lengler, David Steurer
Kasper Lindberg, Lucas Slot, Hongjie Chen, Manuel Wiedmer

Algorithms & Data Structures Exercise sheet 0 HS 24

The solutions for this sheet do not have to be submitted. The sheet will be solved in the first exercise
session on 23 September 2024.

Exercises that are marked by * are challenge exercises.
You can use results from previous parts without solving those parts.

The solutions are intended to help you understand how to solve the exercises and are thus more detailed
than what would be expected at the exam. All parts that contain explanation that you would not need
to include in an exam are in

Exercise 0.1 Induction.
(a) Prove by mathematical induction that for any positive integer n,

n(n+1).

In your solution, you should address the base case, the induction hypothesis and the induction step.

Solution:
Base Case.
Let n = 1. Then we have 1.9
1=—".
2
Induction Hypothesis.
Assume that the property holds for some positive integer k, that is we have
1
1_|_2+..._|_]4;:k(k12_|_)‘
Induction Step.
We must show that the property holds for k£ 4+ 1 summands. We have
k(k+1
1+2+---+k+(k:+1)1-§(;)+k+1
Ck(k+1)+2(k+1)
2
(k+1)(k+2)

2

By the principle of mathematical induction, the statement is true for any positive integer n.

(b) (This subtask is from August 2019 exam). Let 77 : N — R be a function that satisfies the
following two conditions:

T(n) >

4-T(3)+3n whenever n is divisible by 2;
T(1) = 4.

Prove by mathematical induction that
T(n) > 6n? —2n

holds whenever 7 is a power of 2, i.e., n = 2¥ with k € Ny. In your solution, you should address
the base case, the induction hypothesis and the induction step.
Solution:

We solve this exercise by mathematical induction over k.

Base Case.
Let k = 0. Then we have n = 2° = 1 and

T(1)=4>6-1>-2-1.

Induction Hypothesis.
Assume that the property holds for some positive integer m = 2¢. That is, we assume

T(m) > 6m? — 2m.

Induction Step.
Thus, we must show that the property holds for 2m = 2¢+1. We have

T(2m) >4-T(m)+3-(2m)
< 24m? — 8m + 6m
= 24m? — 2m
> 24m? — 4m
=6-(2m)* —2-(2m).

By the principle of mathematical induction, the statement is true for any integer n that is a power
of 2.

Asymptotic Growth

When we estimate the number of elementary operations executed by algorithms, it is often useful to
ignore smaller order terms, and instead focus on the asymptotic growth defined below. We denote by
R the set of all (strictly) positive real numbers and by R{ the set of nonnegative real numbers.

Definition 1. Let f, g : N — R™ be two functions. We say that f grows asymptotically faster than g if
(n) _

lim,, 00 ?(n) = 0.

This definition is also valid for functions defined on RY instead of N. In general, lim % is the same
n—oo

as lim % if the second limit exists.
Xr—r00

For all the following exercises, you can assume that n € N>19. We make this assumption so that all
functions are well-defined and take values in R,

Exercise 0.2 Comparison of functions part 1.

Show that

(@) f(n) :=nlogn grows asymptotically faster than g(n) := n.
Solution:

We have

=0

. . 1
lim = lim
n—oconlogn n—ooologn
and hence, by Definition 1, f(n) := nlogn grows asymptotically faster than g(n) := n.
(b) f(n) := n3 grows asymptotically faster than g(n) := 10n? + 100n + 1000.

Solution:

We have

n—00 n3 n—oo \ N n

1012 + 100n + 1000 10 100 = 1000
n
Hence, by Definition 1, f(n) := n® grows asymptotically faster than g(n) := 10n? + 100n + 1000.
(¢c) f(n):= 3™ grows asymptotically faster than g(n) := 2".
Solution:

We have

and thus by Definition 1, f(n) := 3" grows asymptotically faster than g(n) := 2".

2n 2\"
lim — = lim <> =0,

The following theorem can be useful to compute some limits.

Theorem 1 (L’'Hopital’s rule). Assume that functions f : Rt — RT andg : RT™ — R™ are differentiable,

limy o0 f(2) = limg 00 g(x) = 00 and forallz € RY, ¢'(x) # 0. Iflimy o0 % =C ¢ R(J{ or
(z)

!
limg oo % = 00, then

Exercise 0.3 Comparison of functions part 2.
Show that
(@) f(n) := n'0 grows asymptotically faster than g(n) := nlnn.

Solution:

We apply Theorem 1 to compute

. zlnzx o Inz hma .. (Inz) I 1/z .
im —— = lim —— =" lim = lim ——— = lim ———— =
r—o00 pl-01 r—o00 0-01 300 (1.0.01)/ z—00 0.012—0-99 z—00 0.019-01

Hence, by Definition 1, f(n) := n'! grows asymptotically faster than g(n) := nlnn.
(b) f(n) := €™ grows asymptotically faster than g(n) := n.
Solution:

We apply Theorem 1 to compute

. L Thm.l ;. x’ . 1
lim — =" lim —— = lim — =0.
z—o00 e¥ T—00 (em)/ rz—o00 e¥

Hence by Definition 1, f(n) := €" grows asymptotically faster than g(n) := n.
(c) f(n) := e" grows asymptotically faster than g(n) := n?.
Solution:

We apply Theorem 1 to compute

2 2\/
. Z° Thm1 . T . 2T Thm1 .. T . 1
lim — = hm():hm— ="21lim — =2 lim — =0.
z—00 €% z—o0 (eT) z—oo ¥ z—o0 (eT)! z—00 €%

Hence, by Definition 1, f(n) := ™ grows asymptotically faster than g(n) := n=.

(d)* f(n) := 1.01" grows asymptotically faster than g(n) := n'%.

Solution:

g(x)

Note that we can rewrite 2% as
f(=)

100 100 In =
& € _ _100lnz—In(1.01)z

(101)m = er1n(1.01) =€

We have

1
lim (100Inz — In(1.01)z) = lim z (100” - ln(1.01)>
Xz

T—00 T—00
]
- (lim x) : <1im 10022 —1n(1.01)> — —o0,
T—00 T—00 €

2100

Therefore, lim,_, oo aonF = lim_, o, 100 nz=In(1.01)z

= 0. Hence, by Definition 1, we get that

f(n) := 1.01" grows asymptotically faster than g(n) := n'%,

(e) f(n) :=logyn grows asymptotically faster than g(n) := log, log, n.

Solution:

Define y := log, x. Then y — 0o as x — oo, and therefore

log, 1
im g(x) iy 082logyz . logyy

Z—00 f(x) z—=oo logy X y—oo Yy

Remembering that log, y = Iny/ In 2, we can apply Theorem 1 to compute

] 1 1 ny) 1 1
i 0829 _ 1 g Iy e 1o, (ny)t lim Y .

y—oo Y In2y—oo gy In2y—oo g T In2y—o 1

Hence, by Definition 1, f(n) := logy n grows asymptotically faster than g(n) := log, logy n.
(f) f(n) :=2V1°%2" grows asymptotically faster than g(n) := logi® n.
Solution:

Using rules about the logarithm, we can compute

100
' logl00 ' glog; (logz™ n) . 9100log; log, n)
lim 82 lim = lim = lim 2'00l082logzn—y/logyn

n—00 94 /logo n " noo 21\ /logo n—00 21 /logo n—r00

Notice that

. . log, logy 1
lim (100log,logsn — /logon | = lim | —y/logon | 1 — 100——=—
Jim_ (10010g; log, g2n) = i, (82 < Jlogan

=~ (Jim Viogan) - (J;H;o (1 - 100@))

= —OQ.

Hence,
loga®n

lim — lim 2100 logy logy n—4/logon 0.

n—00 9 logy n n—00
Therefore, by Definition 1, f(n) := 2V°82" grows asymptotically faster than g(n) := logi® n.
@ f(n) :=n% grows asymptotically faster than g(n) := 2V1°%2",
Solution:

We can compute

2\/log2n ' 2\/log2n 2\/log2n

i = i T \/logy n—0.01logy n
Ao T gy L 500t gy i, 2
We get that
logy n
I (\/1 —0.011) — lim [—0.011 VAT |
oo \ V10827 0621) = (082 m < 0.01log, n >
Hence,
V/1
lim 2V 108y 1 ~ lim 2,/logQ n—0.01logon _ 0.
n—yoo 001 oo

Therefore, by Definition 1, f(n) := n%%! grows asymptotically faster than g(n) := 2V1°827,

Exercise 0.4 Simplifying expressions.

Simplify the following expressions as much as possible without changing their asymptotic growth rates.
Concretely, for each expression f(n) in the following list, find an expression g(n) that is as simple as

possible and that satisfies lim,,_, % e RT.
(@) f(n):=5n3 4+ 40n? + 100

Solution:

Let g(n) := n3. Then we indeed have that

40 100
lim M: lim (5—|—+3>:56R+.
n n

() f(n):=5n+1Inn+2n3+ %
Solution:

Let g(n) := n3. Then we indeed have that

) f(n):=nlnn —2n + 3n?
Solution:

Let g(n) := n?. Then we indeed have that

1m1ﬂm::mn<m”—2+3>:3eRf

n—oo g(n) n—00 n n

(d) f(n):=23n+ 4nlogsn® + 78y/n — 9
Solution:

By the properties of logarithms, we have that 4n logs n® = 24nlogsn = %. After removing
the constant, we let g(n) := nlnn. Then we have

Cfm) (23 24 T8 9 24 .
im 2 = gim (22 4 22 _ _ 2 R+
s 60 lnn+ln5+\/ﬁlnn nlnn m5 <

7

(€) f(n) :=logy Vn® + /logy n®
Solution:

By the properties of logarithms, we have that

)
logy, VN = 5D Inn,

and
[5
5 RV
v/1ogan o Inn.

Let g(n) := Inn. Then we indeed have that

f) 5[5 1 5.
nlggo g(n) ner00 21In2 + In2 Inn 21n2 <

(f)* f(n) — o3 + (%)logf) logg n + (\Vﬁ)logg logg n

Solution:

We have that
logg logg n 1
7 8g 1089 logg logg n
. n . nrt . 1 _1
lim \F)l 1 = lim — — lim n7 logg logg n— 7 logs logg n
n—o0 (%) 085 1086 T n—00 , 7 logs logg n—00

Notice that
. 1 1
lim - logg logg n — 1 logs loggn | = —o0,

n—oo
since log, z < log, yif x <yanda > b.

Hence,
logg logg n
7 g3 1089
. n . 1 _1
li \f)l ; — lim n7 logg logg n—; logs loggn 0.
n— o0 (%) 0g5 logg 1 n—o00

Moreover, we also have

o3 1
lim — =" — 9]im n3 zlo8slogs _ (.
n—00 (\4/5)1035 logg n n—00

1
Let g(n) := n1'°%51°8" Then we indeed have that

O R
AL) 1eR™.

Exercise 0.5 * Finding the range of your bow.

To celebrate your start at ETH, your parents gifted you a bow and (an infinite number of) arrows. You
would like to determine the range of your bow, in other words how far you can shoot arrows with it.
For simplicity we assume that all your arrow shots will cover exactly the same distance r, and we define
r as the range of your bow. You also know that this range is at least » > 1 (meter).

You have at your disposition a ruler and a wall. You cannot directly measure the distance covered by
an arrow shot (because the arrow slides some more distance on the ground after reaching distance r),
so the only way you can get information about the range r is as follows. You can stand at a distance ¢
(of your choice) from the wall and shoot an arrow: if the arrow reaches the wall, you know that ¢ < r,
and otherwise you deduce that ¢ > r. By performing such an experiment with various choices of the
distance ¢, you will be able to determine 7 with more and more accuracy. Your goal is to do so with as
few arrow shots as possible.

(a) What is a fast strategy to find an upper bound on the range r? In other words, how can you
find a distance D > 1 such that » < D, using few arrow shots? The required number of shots
might depend on the actual range r, so we will denote it by f(r). Good solutions should have
f(r) < 10log, r for large values of 7.

Solution:

One possible fast strategy is to first shoot an arrow at distance 2 from the wall, and as long as the
arrow reaches the wall, you double your distance to the wall for the next shot. More formally, let
¢; denote your distance to the wall for the i-th shot. Then this startegy uses distances given by
¢; = 2%, and does this until you find a distance #; for which your arrow does not reach the wall. D
is then given by D = ¢; = 2¢, and the required number of shots is f(r) = t, the smallest integer ¢
such that r < 2.

This strategy therefore needs f(r) = [log, 7] shots, and indeed
f(r)=Tlogyr] <1+logyr < 10logyr

for all r > 21/9,

(b) You are now interested in determining r up to some additive error. More precisely, you should find
an estimate 7 such that the range is contained in the interval [7 — 1,7 + 1], i.e.7 — 1 <r <7+ 1.
Denoting by g(r) the number of shots required by your strategy, your goal is to find a strategy with
g(r) < 10log, r for all r sufficiently large.

Solution:

You start by performing the strategy described in part (a). Note that this allows you to find a distance
D such that r € [$D, D] using f(r) = [log, 7] shots. You will then iteratively find smaller and
smaller intervals [a,b] C [$D, D] with r € [a, b], until you get an interval whose length is at most
2 (and then you can take 7 to be the center of this interval).

You start by shooting an arrow from distance (3D + D)/2 = 3 D. If the arrow reaches the wall,
then you know that r € [%D, D], and otherwise you deduce that r € [%D, %D]. Note that in
both cases, the length of the interval of possible ranges r was divided by 2. In the next step, if you
know that r € [3D, D] then you shoot an arrow from distance (2D + D) /2, and if you know that
r € [$D, 3D] then you shoot an arrow from distance (3D + 2D)/2, which allows you to again
divide the length of the interval of possible ranges by 2. You carry on this procedure until you find

an interval [a, b] of length b — a < 2 satisfying r € [a, b], and you define 7 = (a + b)/2.

(©)

By construction, this strategy finds an estimate 7 such that 7 — 1 < r < 7 + 1. Let’s compute the
number of required shots g(r). You start with f(r) = [log, 7] shots in order to perform the strategy
described in (a), and then you need ¢’ additional shots to find the interval [a, b]. Note that you start
with the interval of possible ranges [£ D, D] which has length D /2, and with each additional shot
you divide this length by 2, until you reach a length smaller than 2. Therefore, ¢’ is the smallest
integer such that D/2¢+! < 2,ie. D < 2+2. This means that ¢/ = max{[logy, D] — 2,0} (the
maximum with 0 is taken because you cannot have a negative number of shots). This is at most
[logy 2r] = 1+ [logy 7] because D < 2r, so the total number of required shots is

g(r) = f(r)+t < f(r) + [logar] + 1 =2[logyr] + 1 < 2logy r + 3,

which is smaller than 10 log, r for all 7 > 23/8,

Coming back to part (a), is it possible to have a significantly faster strategy (for example with
f(r) < 10log, log, r for large values of r)?

Solution:

Let h : RT — R™ be any strictly increasing function with lim, o, h(r) = co. We will show that
there exists a strategy that finds some D > r using f(r) := [h(r)] shots. Thus, this will show in
particular that it is is possible to get f(r) < 10log, log, r for large values of r.

Since h : RT — RT is strictly increasing, it is bijective and therefore has an inverse h™! :
R* — RT which is also strictly increasing. Moreover, we have lim, .o, h™'(r) = oo because
lim, o h(r) = oco. The strategy is then to shoot the arrow at the i-th step with a distance of h ! (i)
from the wall, until we get to a step t” where the arrow doesn’t reach the wall (i.e. A= (t") > 7).
The number of required shots is then ¢, which is the smallest integer satisfying h=1(¢") > r, or
equivalently ¢ > h(r). Therefore, t” = [h(r)] as claimed.

For the particular example of f(r) < 10log, log, r, take the function h(r) = log,logy . This
corresponds to shooting an arrow from distance h~!(i) = 22 in the i-th step. Then the number of
required shots is

f(r) = [logylogy 7| < 1+ logy logs 7,

which is smaller than 10log, log, r for all » > 22'/°,

10

