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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 23 September 2024
Johannes Lengler, David Steurer
Kasper Lindberg, Lucas Slot, Hongjie Chen, Manuel Wiedmer
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The solutions for this sheet do not have to be submitted. The sheet will be solved in the first exercise
session on 23 September 2024.

Exercises that are marked by ∗ are challenge exercises.

You can use results from previous parts without solving those parts.

The solutions are intended to help you understand how to solve the exercises and are thus more detailed
than what would be expected at the exam. All parts that contain explanation that you would not need
to include in an exam are in grey.

Exercise 0.1 Induction.

(a) Prove by mathematical induction that for any positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

In your solution, you should address the base case, the induction hypothesis and the induction step.

Solution:

Base Case.
Let n = 1. Then we have

1 =
1 · 2
2

.

Induction Hypothesis.
Assume that the property holds for some positive integer k, that is we have

1 + 2 + · · ·+ k =
k(k + 1)

2
.

Induction Step.
We must show that the property holds for k + 1 summands. We have

1 + 2 + · · ·+ k + (k + 1)
I.H.
=

k(k + 1)

2
+ k + 1

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

We want to use the induction hypothesis, so in the first step above we separate the last term of the
sum and then use the induction hypothesis.

By the principle of mathematical induction, the statement is true for any positive integer n.



(b) (This subtask is from August 2019 exam). Let T : N → R be a function that satisfies the
following two conditions:

T (n) ≥ 4 · T (n2 ) + 3n whenever n is divisible by 2;
T (1) = 4.

Prove by mathematical induction that

T (n) ≥ 6n2 − 2n

holds whenever n is a power of 2, i.e., n = 2k with k ∈ N0. In your solution, you should address
the base case, the induction hypothesis and the induction step.

Solution:

We solve this exercise by mathematical induction over k.

Base Case.
Let k = 0. Then we have n = 20 = 1 and

T (1) = 4 ≥ 6 · 12 − 2 · 1.

Since we do the induction over k, we need to go from k = ℓ to ℓ + 1 here. Hence, the induction
hypothesis is T (2ℓ) ≥ 6(2ℓ)2 − 2(2ℓ) for some ℓ and we want to show that T (2ℓ+1) ≥ 6(2ℓ+1)2 −
2(2ℓ+1). In order to make the argument simpler, we introduce a new variable m = 2ℓ. Then, we
have that 2ℓ+1 = 2m. Hence, we the induction hypothesis is T (m) ≥ 6m2 − 2m and we need to
show that T (2m) ≥ 6(2m)2 − 2(2m). Thus, we get the following:

Induction Hypothesis.
Assume that the property holds for some positive integerm = 2ℓ. That is, we assume

T (m) ≥ 6m2 − 2m.

Induction Step.
Thus, we must show that the property holds for 2m = 2ℓ+1. We have

T (2m) ≥ 4 · T (m) + 3 · (2m)
I.H.
≥ 24m2 − 8m+ 6m

= 24m2 − 2m

≥ 24m2 − 4m

= 6 · (2m)2 − 2 · (2m).

The following derivation is to illustrate how to come up with the above chain of inequalities. It
does (and should) not be part of the final solution.

In a first step, we want to use the induction hypothesis. In order to do that, we need to replace the
T (2m) term by T (m). The way we do this is by using the recurrence relation. Thus, we get that

T (2m) ≥ 4 · T (m) + 3 · (2m)
I.H.
≥ 24m2 − 8m+ 6m.

Now, we want to show that this is at least 6 · (2m)2 − 2 · (2m) = 24m2 − 4m. Comparing this, the
first terms are equal, so what remains is to show that −8m + 6m ≥ −4m. But this is true since
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the left hand side is −2m and −2 ≥ −4. Putting all this together, we get the chain of inequalities
from above.

By the principle of mathematical induction, the statement is true for any integer n that is a power
of 2.

Asymptotic Growth
When we estimate the number of elementary operations executed by algorithms, it is often useful to
ignore smaller order terms, and instead focus on the asymptotic growth defined below. We denote by
R+ the set of all (strictly) positive real numbers and by R+

0 the set of nonnegative real numbers.

Definition 1. Let f, g : N → R+ be two functions. We say that f grows asymptotically faster than g if
limn→∞

g(n)
f(n) = 0.

This definition is also valid for functions defined on R+ instead of N. In general, lim
n→∞

g(n)
f(n) is the same

as lim
x→∞

g(x)
f(x) if the second limit exists.

For all the following exercises, you can assume that n ∈ N≥10. We make this assumption so that all
functions are well-defined and take values in R+.

Exercise 0.2 Comparison of functions part 1.

Show that

(a) f(n) := n log n grows asymptotically faster than g(n) := n.

Solution:

We have
lim
n→∞

n

n log n
= lim

n→∞

1

log n
= 0

and hence, by Definition 1, f(n) := n log n grows asymptotically faster than g(n) := n.

(b) f(n) := n3 grows asymptotically faster than g(n) := 10n2 + 100n+ 1000.

Solution:

We have
lim
n→∞

10n2 + 100n+ 1000

n3
= lim

n→∞

(
10

n
+

100

n2
+

1000

n3

)
= 0.

Hence, by Definition 1, f(n) := n3 grows asymptotically faster than g(n) := 10n2+100n+1000.

(c) f(n) := 3n grows asymptotically faster than g(n) := 2n.

Solution:

We have
lim
n→∞

2n

3n
= lim

n→∞

(
2

3

)n

= 0,

and thus by Definition 1, f(n) := 3n grows asymptotically faster than g(n) := 2n.
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Here, it is important that the term 2
3 < 1, otherwise the limit would not be 0.

The following theorem can be useful to compute some limits.

Theorem 1 (L’Hôpital’s rule). Assume that functions f : R+ → R+ and g : R+ → R+ are differentiable,
limx→∞ f(x) = limx→∞ g(x) = ∞ and for all x ∈ R+, g′(x) ̸= 0. If limx→∞

f ′(x)
g′(x) = C ∈ R+

0 or

limx→∞
f ′(x)
g′(x) = ∞, then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

Exercise 0.3 Comparison of functions part 2.

Show that

(a) f(n) := n1.01 grows asymptotically faster than g(n) := n lnn.

Solution:

Our goal is to applyTheorem 1. For this, we view the functions f and g as functions fromR+ → R+

and use the the fact that if the limit limx→∞
f(x)
g(x) exists, then we have

lim
x→∞

g(x)

f(x)
= lim

n→∞

g(n)

f(n)
,

where x ∈ R+ and n ∈ N. Thus, it is sufficient to show that limx→∞
f(x)
g(x) = 0. We use this in

several parts of this exercise.

We apply Theorem 1 to compute

lim
x→∞

x lnx

x1.01
= lim

x→∞

lnx

x0.01
Thm.1
= lim

x→∞

(lnx)′

(x0.01)′
= lim

x→∞

1/x

0.01x−0.99
= lim

x→∞

1

0.01x0.01
= 0.

Hence, by Definition 1, f(n) := n1.01 grows asymptotically faster than g(n) := n lnn.

(b) f(n) := en grows asymptotically faster than g(n) := n.

Solution:

We apply Theorem 1 to compute

lim
x→∞

x

ex
Thm.1
= lim

x→∞

x′

(ex)′
= lim

x→∞

1

ex
= 0.

Hence by Definition 1, f(n) := en grows asymptotically faster than g(n) := n.

(c) f(n) := en grows asymptotically faster than g(n) := n2.

Solution:

We apply Theorem 1 to compute

lim
x→∞

x2

ex
Thm.1
= lim

x→∞

(x2)′

(ex)′
= lim

x→∞

2x

ex
Thm.1
= 2 lim

x→∞

x′

(ex)′
= 2 lim

x→∞

1

ex
= 0.

Hence, by Definition 1, f(n) := en grows asymptotically faster than g(n) := n2.

4



(d)∗ f(n) := 1.01n grows asymptotically faster than g(n) := n100.

Solution:

Note that we can rewrite g(x)
f(x) as

x100

(1.01)x
=

e100 lnx

ex ln(1.01)
= e100 lnx−ln(1.01)x.

The goal now is to show that limx→∞ 100 lnx− ln(1.01)x = −∞. This will allow us to conclude
that limx→∞

x100

(1.01)x = limx→∞ e100 lnx−ln(1.01)x = 0.

We have

lim
x→∞

(100 lnx− ln(1.01)x) = lim
x→∞

x

(
100

lnx

x
− ln(1.01)

)
=
(
lim
x→∞

x
)
·
(

lim
x→∞

100
lnx

x
− ln(1.01)

)
= −∞,

What we are using here is that for two function h1, h2 : R+ → R+ we have that

lim
x→∞

h1(x) · h2(x) =
(
lim
x→∞

h1(x)
)
·
(
lim
x→∞

h2(x)
)

as long as the two limits limx→∞ h1(x) and limx→∞ h2(x) exist.

Therefore, limx→∞
x100

(1.01)x = limx→∞ e100 lnx−ln(1.01)x = 0. Hence, by Definition 1, we get that
f(n) := 1.01n grows asymptotically faster than g(n) := n100.

(e) f(n) := log2 n grows asymptotically faster than g(n) := log2 log2 n.

Solution:

To remove one of the log-factors, we want to substitute y = log2 x. This works since x → ∞ if and
only if y → ∞.

Define y := log2 x. Then y → ∞ as x → ∞, and therefore

lim
x→∞

g(x)

f(x)
lim
x→∞

log2 log2 x

log2 x
= lim

y→∞

log2 y

y
.

Remembering that log2 y = ln y/ ln 2, we can apply Theorem 1 to compute

lim
y→∞

log2 y

y
=

1

ln 2
lim
y→∞

ln y

y

Thm.1
=

1

ln 2
lim
y→∞

(ln y)′

y′
=

1

ln 2
lim
y→∞

1/y

1
= 0.

Hence, by Definition 1, f(n) := log2 n grows asymptotically faster than g(n) := log2 log2 n.

(f) f(n) := 2
√

log2 n grows asymptotically faster than g(n) := log1002 n.

Solution:

Using rules about the logarithm, we can compute

lim
n→∞

log1002 n

2
√

log2 n
= lim

n→∞

2log2(log
100
2 n)

2
√

log2 n
= lim

n→∞

2100 log2 log2 n

2
√

log2 n
= lim

n→∞
2100 log2 log2 n−

√
log2 n.
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Notice that

lim
n→∞

(
100 log2 log2 n−

√
log2 n

)
= lim

n→∞

(
−
√
log2 n

(
1− 100

log2 log2 n√
log2 n

))

= −
(
lim
n→∞

√
log2 n

)
·

(
lim
n→∞

(
1− 100

log2 log2 n√
log2 n

))
= −∞.

Here, we used again that limn→∞ h1(n) · h2(n) = (limn→∞ h1(n)) · (limn→∞ h2(n)) as long the
latter two limits exist. Furthermore, we need that

lim
n→∞

100
log2 log2 n√

log2 n
= 0.

As before, it is sufficient to show that limx→∞ 100 log2 log2 x√
log2 x

for x ∈ R+. This can be shown as

follows. We substitute y = log2(x) and, similarly to part (e), we get that

lim
x→∞

100
log2 log2 x√

log2 x
= 100 · lim

y→∞

log2 y√
y

Thm.1
= 100 · lim

y→∞

1/y

1/(2
√
y)

= 200 · lim
y→∞

1
√
y
= 0.

Thus, we have that limn→∞ 100 log2 log2 n√
log2 n

= 0 and limn→∞

(
1− 100 log2 log2 n√

log2 n

)
= 1. This allows

us to conclude that indeed

lim
n→∞

(
100 log2 log2 n−

√
log2 n

)
= −∞.

Hence,

lim
n→∞

log1002 n

2
√

log2 n
= lim

n→∞
2100 log2 log2 n−

√
log2 n = 0.

Therefore, by Definition 1, f(n) := 2
√

log2 n grows asymptotically faster than g(n) := log1002 n.

(g) f(n) := n0.01 grows asymptotically faster than g(n) := 2
√

log2 n.

Solution:

We can compute

lim
n→∞

2
√

log2 n

n0.01
= lim

n→∞

2
√

log2 n

2log(n0.01)
= lim

n→∞

2
√

log2 n

20.01 log2 n
= lim

n→∞
2
√

log2 n−0.01 log2 n

We get that

lim
n→∞

(√
log2 n− 0.01 log2 n

)
= lim

n→∞

(
−0.01 log2 n

(
1−

√
log2 n

0.01 log2 n

))
= −∞.

As for the previous exercise, to get this it is sufficient to show that limn→∞

√
log2 n

0.01 log2 n
= 0. This is

true since
√

log2 n

0.01 log2 n
= 1

0.01
√

log2 n
.

Hence,

lim
n→∞

2
√

log2 n

n0.01
= lim

n→∞
2
√

log2 n−0.01 log2 n = 0.

Therefore, by Definition 1, f(n) := n0.01 grows asymptotically faster than g(n) := 2
√

log2 n.
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Exercise 0.4 Simplifying expressions.

Simplify the following expressions asmuch as possible without changing their asymptotic growth rates.

Concretely, for each expression f(n) in the following list, find an expression g(n) that is as simple as
possible and that satisfies limn→∞

f(n)
g(n) ∈ R+.

(a) f(n) := 5n3 + 40n2 + 100

Solution:

The dominating term for n → ∞ in the above expression is 5n3 (this grows the fastest). Thus, a
first guess would be 5n3. However, we can simplify this even more by dropping the constant 5.
Thus, we want to prove that n3 has the same asymptotic growth rate as f(n).

Let g(n) := n3. Then we indeed have that

lim
n→∞

f(n)

g(n)
= lim

n→∞

(
5 +

40

n
+

100

n3

)
= 5 ∈ R+.

(b) f(n) := 5n+ lnn+ 2n3 + 1
n

Solution:

Let g(n) := n3. Then we indeed have that

lim
n→∞

f(n)

g(n)
= lim

n→∞

(
5

n2
+

lnn

n3
+ 2 +

1

n4

)
= 2 ∈ R+.

For the part lnn
n3 , we can use Theorem 1 to show

lim
n→∞

lnn

n3

Thm.1
= lim

n→∞

1/n

3n2
= 0.

(c) f(n) := n lnn− 2n+ 3n2

Solution:

Let g(n) := n2. Then we indeed have that

lim
n→∞

f(n)

g(n)
= lim

n→∞

(
lnn

n
− 2

n
+ 3

)
= 3 ∈ R+.

For the part lnn
n , we can again use Theorem 1 to show

lim
n→∞

lnn

n

Thm.1
= lim

n→∞

1/n

1
= 0.

(d) f(n) := 23n+ 4n log5 n
6 + 78

√
n− 9

Solution:

By the properties of logarithms, we have that 4n log5 n
6 = 24n log5 n = 24n lnn

ln 5 . After removing
the constant, we let g(n) := n lnn. Then we have

lim
n→∞

f(n)

g(n)
= lim

n→∞

(
23

lnn
+

24

ln 5
+

78√
n lnn

− 9

n lnn

)
=

24

ln 5
∈ R+.
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(e) f(n) := log2
√
n5 +

√
log2 n

5

Solution:

By the properties of logarithms, we have that

log2
√
n5 =

5

2 ln 2
lnn,

and √
log2 n

5 =

√
5

ln 2
·
√
lnn.

Let g(n) := lnn. Then we indeed have that

lim
n→∞

f(n)

g(n)
= lim

n→∞

(
5

2 ln 2
+

√
5

ln 2
· 1√

lnn

)
=

5

2 ln 2
∈ R+.

(f)∗ f(n) := 2n3 + ( 4
√
n)

log5 log6 n + ( 7
√
n)

log8 log9 n

Solution:

The terms ( 4
√
n)

log5 log6 n and ( 7
√
n)

log8 log9 n are exponential in n, whereas 2n3 is not. So, one of

these terms is the dominating one. To figure out which one, we compute limn→∞
( 7√n)

log8 log9 n

( 4√n)
log5 log6 n .

We have that

lim
n→∞

( 7
√
n)

log8 log9 n

( 4
√
n)

log5 log6 n
= lim

n→∞

n
1
7
log8 log9 n

n
1
4
log5 log6 n

= lim
n→∞

n
1
7
log8 log9 n− 1

4
log5 log6 n.

Notice that
lim
n→∞

(
1

7
log8 log9 n− 1

4
log5 log6 n

)
= −∞,

since loga x ≤ logb y if x ≤ y and a ≥ b.

Hence,

lim
n→∞

( 7
√
n)

log8 log9 n

( 4
√
n)

log5 log6 n
= lim

n→∞
n

1
7
log8 log9 n− 1

4
log5 log6 n = 0.

This shows that the term ( 4
√
n)

log5 log6 n dominates the term ( 7
√
n)

log8 log9 n. We now formally show
that n

1
4
log5 log6 n also dominates the term 2n3.

Moreover, we also have

lim
n→∞

2n3

( 4
√
n)

log5 log6 n
= 2 lim

n→∞
n3− 1

4
log5 log6 n = 0.

Let g(n) := n
1
4
log5 log6 n. Then we indeed have that

lim
n→∞

f(n)

g(n)
= 1 ∈ R+.

Notice that we cannot remove the constant in the exponent since this would change the asympotic
behaviour.
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Exercise 0.5 ∗ Finding the range of your bow.

To celebrate your start at ETH, your parents gifted you a bow and (an infinite number of) arrows. You
would like to determine the range of your bow, in other words how far you can shoot arrows with it.
For simplicity we assume that all your arrow shots will cover exactly the same distance r, and we define
r as the range of your bow. You also know that this range is at least r ≥ 1 (meter).

You have at your disposition a ruler and a wall. You cannot directly measure the distance covered by
an arrow shot (because the arrow slides some more distance on the ground after reaching distance r),
so the only way you can get information about the range r is as follows. You can stand at a distance ℓ
(of your choice) from the wall and shoot an arrow: if the arrow reaches the wall, you know that ℓ ≤ r,
and otherwise you deduce that ℓ > r. By performing such an experiment with various choices of the
distance ℓ, you will be able to determine r with more and more accuracy. Your goal is to do so with as
few arrow shots as possible.

(a) What is a fast strategy to find an upper bound on the range r? In other words, how can you
find a distance D ≥ 1 such that r < D, using few arrow shots? The required number of shots
might depend on the actual range r, so we will denote it by f(r). Good solutions should have
f(r) ≤ 10 log2 r for large values of r.

Solution:

One possible fast strategy is to first shoot an arrow at distance 2 from the wall, and as long as the
arrow reaches the wall, you double your distance to the wall for the next shot. More formally, let
ℓi denote your distance to the wall for the i-th shot. Then this startegy uses distances given by
ℓi = 2i, and does this until you find a distance ℓt for which your arrow does not reach the wall. D
is then given by D = ℓt = 2t, and the required number of shots is f(r) = t, the smallest integer t
such that r < 2t.

This strategy therefore needs f(r) = ⌈log2 r⌉ shots, and indeed

f(r) = ⌈log2 r⌉ ≤ 1 + log2 r ≤ 10 log2 r

for all r ≥ 21/9.

(b) You are now interested in determining r up to some additive error. More precisely, you should find
an estimate r̃ such that the range is contained in the interval [r̃ − 1, r̃ + 1], i.e. r̃ − 1 ≤ r ≤ r̃ + 1.
Denoting by g(r) the number of shots required by your strategy, your goal is to find a strategy with
g(r) ≤ 10 log2 r for all r sufficiently large.

Solution:

You start by performing the strategy described in part (a). Note that this allows you to find a distance
D such that r ∈ [12D,D] using f(r) = ⌈log2 r⌉ shots. You will then iteratively find smaller and
smaller intervals [a, b] ⊆ [12D,D] with r ∈ [a, b], until you get an interval whose length is at most
2 (and then you can take r̃ to be the center of this interval).

You start by shooting an arrow from distance (12D + D)/2 = 3
4D. If the arrow reaches the wall,

then you know that r ∈ [34D,D], and otherwise you deduce that r ∈ [12D, 34D]. Note that in
both cases, the length of the interval of possible ranges r was divided by 2. In the next step, if you
know that r ∈ [34D,D] then you shoot an arrow from distance (34D+D)/2, and if you know that
r ∈ [12D, 34D] then you shoot an arrow from distance (12D + 3

4D)/2, which allows you to again
divide the length of the interval of possible ranges by 2. You carry on this procedure until you find
an interval [a, b] of length b− a ≤ 2 satisfying r ∈ [a, b], and you define r̃ = (a+ b)/2.
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By construction, this strategy finds an estimate r̃ such that r̃ − 1 ≤ r ≤ r̃ + 1. Let’s compute the
number of required shots g(r). You start with f(r) = ⌈log2 r⌉ shots in order to perform the strategy
described in (a), and then you need t′ additional shots to find the interval [a, b]. Note that you start
with the interval of possible ranges [12D,D] which has length D/2, and with each additional shot
you divide this length by 2, until you reach a length smaller than 2. Therefore, t′ is the smallest
integer such that D/2t

′+1 ≤ 2, i.e. D ≤ 2t
′+2. This means that t′ = max{⌈log2D⌉ − 2, 0} (the

maximum with 0 is taken because you cannot have a negative number of shots). This is at most
⌈log2 2r⌉ = 1 + ⌈log2 r⌉ because D ≤ 2r, so the total number of required shots is

g(r) = f(r) + t′ ≤ f(r) + ⌈log2 r⌉+ 1 = 2⌈log2 r⌉+ 1 ≤ 2 log2 r + 3,

which is smaller than 10 log2 r for all r ≥ 23/8.

(c) Coming back to part (a), is it possible to have a significantly faster strategy (for example with
f(r) ≤ 10 log2 log2 r for large values of r)?

Solution:

Let h : R+ → R+ be any strictly increasing function with limr→∞ h(r) = ∞. We will show that
there exists a strategy that finds some D > r using f(r) := ⌈h(r)⌉ shots. Thus, this will show in
particular that it is is possible to get f(r) ≤ 10 log2 log2 r for large values of r.

Since h : R+ → R+ is strictly increasing, it is bijective and therefore has an inverse h−1 :
R+ → R+ which is also strictly increasing. Moreover, we have limr→∞ h−1(r) = ∞ because
limr→∞ h(r) = ∞. The strategy is then to shoot the arrow at the i-th step with a distance of h−1(i)
from the wall, until we get to a step t′′ where the arrow doesn’t reach the wall (i.e. h−1(t′′) > r).
The number of required shots is then t′′, which is the smallest integer satisfying h−1(t′′) > r, or
equivalently t′′ > h(r). Therefore, t′′ = ⌈h(r)⌉ as claimed.

For the particular example of f(r) ≤ 10 log2 log2 r, take the function h(r) = log2 log2 r. This
corresponds to shooting an arrow from distance h−1(i) = 22

i in the i-th step. Then the number of
required shots is

f(r) = ⌈log2 log2 r⌉ ≤ 1 + log2 log2 r,

which is smaller than 10 log2 log2 r for all r ≥ 22
1/9 .
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