
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 16 December 2024

Johannes Lengler, David Steurer

Kasper Lindberg, Lucas Slot, Hongjie Chen, Manuel Wiedmer

Algorithms & Data Structures Exercise sheet 13 HS 24

The solutions for this sheet are not submitted.

Exercises that are marked by
∗
are challenge exercises.

You can use results from previous parts without solving those parts.

The solutions are intended to help you understand how to solve the exercises and are thus more detailed

than what would be expected at the exam. All parts that contain explanation that you would not need

to include in an exam are in grey.

Exercise 13.1 Shortest path with negative edge weights.

We consider the following graph:

1

2

3

6

5

4

3

5

1

4

4

1

1

-4

5

1

2

2

(a) What is the length of the shortest path from vertex 1 to vertex 6?

Solution:

The shortest path from vertex 1 to vertex 6 is (1, 3, 5, 2, 6) and has length 5− 4 + 1 + 1 = 3.

(b) Consider Dijkstra’s algorithm (that fails here, because the graph has negative edge weights). Which

path length from vertex 1 to vertex 6 is Dijkstra computing? State the sets S, V \ S immediately

before Dijkstra is making its first error and explain in words what goes wrong.

Solution:

WithDijkstra’s algorithmwe find the path (1, 2, 6) that has length 4. The first mistake happens after

having processed vertex 1. The sets at that point in time are S = {1} and V \ S = {2, 3, 4, 5, 6}.
To vertex 2, we know a path of length 3, to vertex 3 a path of length 5. To the other vertices, we

do not know a path so far. Hence, Dijkstra’s algorithm chooses vertex 2 to continue, i.e., includes 2

into S, which corresponds to the assumption that we already know the shortest path to this vertex.

This is clearly a mistake, since the path (1, 3, 5, 2) has only length 2.

(c) Which efficient algorithm can be used to compute a shortest path from vertex 1 to vertex 6 in the

given graph? What is the running time of this algorithm in general, expressed in n, the number of

vertices, andm, the number of edges?

Solution:

We can use the algorithm of Bellman and Ford which runs in O(nm) time.

(d) On the given graph, execute the algorithm by Floyd andWarshall to find all shortest paths. Express
all entries of the (6× 6× 7)-table as 7 tables of size 6× 6. (It is enough to state the path length in

the entry without the predecessor vertex.) Mark the entries in the table in which one can see that

the graph does not contain a negative cycle.

Solution:

Each of the following tables corresponds to a fixed value k ∈ {0, 1, 2, 3, 4, 5, 6} and contains the

lengths of all shortest paths that use only interior vertices in {1, . . . , k}. Since all entries on the

diagonal are non-negative, we can conclude that the graph does not contain any negative cycle.

Changes are marked by italic font.

from\to 1 2 3 4 5 6

1 0 3 5 ∞ ∞ ∞
2 1 0 4 ∞ 4 1

3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 ∞ 1 ∞ 2 0 ∞
6 ∞ ∞ ∞ ∞ 2 0

k = 0

from\to 1 2 3 4 5 6

1 0 3 5 ∞ ∞ ∞
2 1 0 4 ∞ 4 1

3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 ∞ 1 ∞ 2 0 ∞
6 ∞ ∞ ∞ ∞ 2 0

k = 1

from\to 1 2 3 4 5 6

1 0 3 5 ∞ 7 4

2 1 0 4 ∞ 4 1

3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2

6 ∞ ∞ ∞ ∞ 2 0

k = 2

from\to 1 2 3 4 5 6

1 0 3 5 6 1 4

2 1 0 4 5 0 1

3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2

6 ∞ ∞ ∞ ∞ 2 0

k = 3

2

from\to 1 2 3 4 5 6

1 0 3 5 6 1 4

2 1 0 4 5 0 1

3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2

6 ∞ ∞ ∞ ∞ 2 0

k = 4

from\to 1 2 3 4 5 6

1 0 2 5 3 1 3

2 1 0 4 2 0 1

3 -2 -3 0 -2 -4 -2

4 7 6 10 0 5 7

5 2 1 5 2 0 2

6 4 3 7 4 2 0

k = 5

from\to 1 2 3 4 5 6

1 0 2 5 3 1 3

2 1 0 4 2 0 1

3 -2 -3 0 -2 -4 -2

4 7 6 10 0 5 7

5 2 1 5 2 0 2

6 4 3 7 4 2 0

k = 6

Exercise 13.2 Invariant and correctness of algorithm (This exercise is from the January 2020
exam).

Given is a weighted directed acyclic graph G = (V,E,w), where V = {1, . . . , n}. The goal is to find

the length of the longest path in G.

Let’s fix some topological ordering ofG and consider the array top[1, . . . , n] such that top[i] is a vertex
that is on the i-th position in the topological ordering.

Consider the following pseudocode:

Algorithm 1 Find-length-of-longest-path(G, top)

L[1], . . . , L[n]← 0, . . . , 0
for i = 1, . . . , n do

v ← top[i]
L[v]← max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
return max

1≤i≤n
L[i]

Here we assume that maximum over the empty set is 0.

Show that the pseudocode above satisfies the following loop invariant INV(k) for 1 ≤ k ≤ n:
After k iterations of the for-loop, L[top[j]] contains the length of the longest path that ends with top[j]
for all 1 ≤ j ≤ k.

Specifically, prove the following 3 assertions:

3

i) INV(1) holds.

ii) If INV(k) holds, then INV(k + 1) holds (for all 1 ≤ k < n).

iii) INV(n) implies that the algorithm correctly computes the length of the longest path.

State the running time of the algorithm described above in Θ-notation in terms of |V | and |E|. Justify
your answer.

Solution:

Proof of i).

In the first iteration we have v = top[1]. By the definition the first vertex in topological order has no

incoming edges. Thus, L[top[1]] gets assigned the maximum over the empty set, which we assumed to

be 0. As a consequence, INV(1) holds as there is no longest path that ends at top[1] and L[top[1]] = 0.

Proof of ii).

We assume INV(k) holds. In the (k + 1)-th iteration we have v = top[k + 1]. By the definition of

topological ordering we have that all u ∈ V with (u, top[k + 1]) ∈ E are in {top[1], . . . , top[k]}. The

length of the longest path via u ending at v can be decomposed into the length of the longest path

ending at u plus the weight of the edge (u, v). Therefore, given INV(k), i.e., L[top[j]] contains the
length of the longest path for all 1 ≤ j ≤ k, the maximum max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
computes the

length of the longest path ending at v. Consequently, INV(k + 1) holds.

Proof of iii).

INV (n) implies that each entry L[v] contains the length of the longest path ending at v. Thus, com-

puting the maximum max
1≤i≤n

L[i] corresponds to computing the length of the longest path in G.

Running time:

The running time is in Θ(|E| + |V |). The loop takes time Θ(|E| + |V |) since
∑

v∈V deg−(v) = |E|,
and taking the maximum at the end takes time Θ(|V |).

Exercise 13.3 Cheap flights (This exercise is from the January 2020 exam).

Suppose that there are n airports in the country Examistan. Between some of them there are direct

flights. For each airport there exists at least one direct flight from this airport to some other airport.

Totally there arem different direct flights between the airports of Examistan.

For each direct flight you know its cost. The cost of each flight is a strictly positive integer.

You can assume that each airport is represented by its number, i.e. the set of airports is {1, . . . , n}.

(a) Model these airports, direct flights and their costs as a directed graph: give a precise description

of the vertices, the edges and the weights of the edges of the graph G = (V,E,w) involved (if

possible, in words and not formal).

Solution:

Each airport is a vertex in the directed graph. Two vertices u, v ∈ V are connected by a directed

edge e ∈ E, if there exists a direct flight starting from airport u to airport v. The weight w(e) of
the edge e = (u, v), is the cost of the direct flight from u to v.

4

This graphs fulfills the condition |E| ≥ |V | (since “For each airport there exists at least one direct

flight from this airport to some other airport.”). However, note that this does not imply that the

graph is connected.

In points (b) and (c) you can assume that the directed graph is represented by a data structure that

allows you to traverse the direct predecessors and direct successors of a vertex u in time O(deg−(u))
andO(deg+(u)) respectively, where deg−(u) is the in-degree of vertex u and deg+(u) is the out-degree
of vertex u.

(b) Suppose that you are at the airport S and you want to fill the array d of minimal traveling costs to

each airport. That is, for each airport A, d[A] is a minimal cost that you must pay to travel from S
to A.

Name the most efficient algorithm that was discussed in lectures which solves the corresponding

graph problem. If several such algorithms were described in lectures (with the same running time),

it is enough to name one of them. State the running time of this algorithm in Θ-notation in terms

of n andm.

Solution:

Name of the algorithm used to solve this problem: Dijkstra’s Algorithm

Runtime: O
(
(m+ n) · log n

)
if implemented with binary heap.

“O(m+ n log n) if implemented with Fibonnachy heap” would also be correct.

(c) Now you want to know how many optimal routes there are to airport T . In other words, if cmin is

the minimal cost from S to T then you want to compute the number of routes from S to T of cost
cmin.

Assume that the array d from (b) is already filled. Provide an as efficient as possible dynamic pro-
gramming algorithm that takes as input the graph G from task (a), the array d from point (b) and

the airports S and T , and outputs the number of routes from S to T of minimal cost.

In your solution, address the following aspects:

1. Dimensions of the DP table: What are the dimensions of the DP table?

2. Subproblems: What is the meaning of each entry?

3. Recursion: How can an entry of the table be computed from previous entries? Justify why your

recurrence relation is correct. Specify the base cases of the recursion, i.e., the cases that do not

depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry

have been determined in previous steps? Describe the calculation order in pseudocode.

5. Extracting the solution: How can the solution be extracted once the table has been filled?

6. Running time: What is the running time of your solution?

Hint: Note that the array d is a part of the input, so you don’t need to include the time that is required
to fill this array to the running time here.

Solution:

1. Dimensions of the DP table: DP[1 . . . n]

2. Subproblems: DP [i] is the number of optimal routes from S to the airport i.

5

3. Recursion: If d[v] =∞, DP [v] = 0. If v ̸= S and d[v] <∞, then

DP [v] =
∑

u:(u,v)∈E
d[u]+w((u,v))=d[v]

DP [u] .

Base case: DP [S] = 1.

First, notice that if d[v] =∞, then there is no way to reach v from S. Hence, there are no routes
of minimal cost between them.

For the recursive case, we want to calculate the entry DP [v] for some vertex v. Consider an
optimal paths between S and v, (S, . . . , w, v). As all weights are positive, w’s distance has

to be smaller than that of v. By our calculation order, all vertices with a smaller distance have

already been calculated and, by our assumption, for every vertexw,DP [w] contains the number

of optimal paths between S and w. Now we extend the intermediate paths by appending v.
Then, the number of possible pathways is defined by

∑
w:(w,v)∈E

d[w]+w((w,v))=d[v]

DP [w]. Therefore, our

recursion is correct.

4. Calculation order: Let i1, . . . , in be a order of vertices, such that for all ij ̸= ik, if d[ij] < d[ik],
then ij is before jk. This order corresponds to order defined by the array d. It can be determined

by sorting d and remembering the original indexes.

for i = i1 . . . in do
Compute DP [i]

5. Extracting the solution: The result is contained in DP [T].

6. Running time: WeneedΘ(n log n) time to sort the array d. To fill the DP table we needΘ(n+m),
since the time required to compute DP [v] is Θ(deg−(v) + 1), and

∑
v∈V Θ(deg−(v) + 1) =

Θ(n+m). Hence the running time of the algorithm described above is Θ(n log n+m).

Exercise 13.4 Elevator.

Consider the following definitions for a directed graph G = (V,E):

1. The out-degree of a vertex v ∈ V , denoted by deg
out

(v), is the number of edges of E that start at

v, i.e., deg
out

(v) = |{(v, w) ∈ E | w ∈ V }|.

2. The in-degree of a vertex v ∈ V , denoted by deg
in
(v), is the number of edges that end at v, i.e.,

deg
in
(v) = |{(u, v) ∈ E | u ∈ V }|.

3. A Eulerian walk is a sequence v1, . . . , vk ∈ V such that k = |E| + 1 and {(vi, vi+1) | 1 ≤ i <
k} = E. Note that this definition implies (vi, vi+1) being different edges for 1 ≤ i < k.

In this exercise, you can use without proof the following result:

Lemma 1. A directed graph G = (V,E) admits a Eulerian walk if, and only if, all of the following

conditions holds:

1. At most one vertex v ∈ V is such that deg
out

(v) = deg
in
(v) + 1;

2. At most one vertex v ∈ V is such that deg
in
(v) = deg

out
(v) + 1;

3. Every vertex that satisfies neither (i) nor (ii) is such that deg
out

(v) = deg
in
(v);

6

4. The undirected graph G′
obtained by ignoring the direction of edges in G is connected.

(a) Write down the pseudocode of an O(|V | + |E|) time algorithm that takes as input a directed
graph G, and returns true if G has a Eulerian walk, and false otherwise. Justify its correctness

and complexity.

Solution:

See Algorithm 2.

The algorithm works by checking if all conditions from the previous lemma are fulfilled.

For conditions 1-3, it is sufficient to compute the set of in- and out-neighbors (or simply the degrees)

of all nodes and check the equations. This can be done straightforwardly in time O(|V |+ |E|).

For conditions 4, we perform a DFS from any vertex (here, vertex 0) on the undirected graph and

check whether all vertices are marked (i.e., reached) by the algorithm. This can be done inO(|V |+
|E|) (DFS) and O(|V |) (reachability check) respectively.

In total, the complexity of our algorithm in O(|V |+ |E|).

(b) Alice is launching iFahrstuhl™, a start-up developing the next generation of elevators. Assume a

building with n floors indexed from 1 to n and an elevator which has room for a single person. The

elevator receives requests in the form of pairs (i, j) ∈ {1, . . . , n}2 of distinct floors between which

a single person is willing to travel.

Consider the scenariowherem peoplewant to use the elevator. For 1 ≤ t ≤ m, the t-th peoplewant
to go from floor it to floor jt. These requests are given as a finite set S = {(i1, j1), . . . , (im, jm)}.

A finite set S = {(i1, j1), . . . , (im, jm)} of requests is called optimal if the pairs can be ordered

such that all requests can be processed and the elevator is never empty when moving between two

floors (except maybe on its way to fetching the first person).

For example, for n = 5, the set S1 = {(2, 3), (4, 1), (3, 4)} is optimal, since it can ordered as

{(2, 3), (3, 4), (4, 1)}, which means that the elevator can start on floor 2 to fetch person 1, go to

floor 3, drop person 1 and fetch person 3, go to floor 4, drop person 3 and fetch person 2, go to floor

1, drop person 2, and terminate there. However, the set S2 = {(2, 3), (4, 1)} is not optimal, since

there is no way a single elevator can satisfy both requests without moving empty from floor 3 to

floor 4 or floor 1 to floor 2.

Given a set of requests S, Alice’s elevators should be able to decide whether it’s optimal. Model

the problem of detecting optimal sets of requests as a graph problem and provide an algorithm to

solve it. Describe the vertex and edge set, edge weights (if needed), the graph problem you solve,

the algorithm you use, and its complexity. To obtain full points, your algorithm should run in time

O(n+ |S|).

Solution:

The problem is equivalent to the existence of an Euler path in the unweighted directed graphG1 =
(V1, E1) defined by

V1 = {1, . . . , n}
E1 = S.

We can use the algorithm from question (a) to find this Euler path. Its complexity isO(|V1|+|E1|) =
O(n+ |S|).

7

Algorithm 2 Check if a directed graph has a Eulerian path

function DFS(in neighbors, out neighbors, v, marked)
if marked[v] then

continue
else

marked[v]← True

for w ∈ in neighbors[v] ∪ out neighbors[v] do
DFS(in neighbors, out neighbors, w, marked)

function CheckEulerian(V ,E)

if |V | = 0 then
return True

out neighbors← array[|V |] ▷ Initialized to ∅
in neighbors← array[|V |] ▷ Initialized to ∅
for (v, w) ∈ E do ▷ Compute neighbors

out neighbors[v]← out neighbors[v] ∪ {w}
in neighbors[w]← in neighbors[w] ∪ {v}

has plusone, has minusone = False, False ▷ Check conditions 1-3

for v ∈ V do
if |out neighbors[v]| = |in neighbors[v]| then

continue
else if |out neighbors[v]| = |in neighbors[v]|+ 1 then

if has plusone then
return False

else
has plusone = True

else if |out neighbors[v]| = |in neighbors[v]| − 1 then
if has minusone then

return False

else
has minusone = True

else
return False

marked← bool[|V |] ▷ Initialized to False

DFS(in neighbors, out neighbors, 0, marked)
for v ∈ V do ▷ Check condition 4

if ¬marked[v] then
return False

return True

8

(c) Alice’s startup has installed k single-person elevators in your n-floor building. Unfortunately, not
all elevators can reach all floors. Hence, for each elevator j ∈ {1, . . . , k}, you are given a set

Fj ⊆ {1, . . . , n} of floors it can reach. When you arrive in front of an elevator j, say on floor

f ∈ Fj , you can immediately call it, after which you have to wait until it reaches your floor from its

current position, moving at the constant speed of 1 time unit per floor. When the elevator arrives,

you choose the destination floor f ′ ∈ Fj , and the elevator brings you to this floor at the constant

speed of 0.5 time units per floor (for security reasons, the elevator is slower when it is not empty).

The time spent moving between elevators on the same floor, calling the elevator or choosing the

destination floor is negligible, since you are very fast at interacting with elevators.

You are alone in the building at floor 1, with each elevator j being initally located on floor fj . You
would like to go to floor n. What is the minimal amount of time that you have to travel using Alice’s

elevators? If you cannot reach floor n, then output∞.

Model the problem as a graph problem and provide an algorithm to solve it. Describe the vertex

and edge set, edge weights (if needed), the graph problem you solve, the algorithm you use, and

its complexity. To obtain full points, your algorithm should run in time O((n +K) log n), where
K =

∑k
j=1|Fj |2.

Solution:

The cost of your journey between s and d using a sequence of elevators j1, . . . , jp and the sequence
of floors k′0 = s, . . . , k′p−1, k

′
p = d will be the sum of the time spent in the various elevators, i.e.∑p

ℓ=1(2 · |k
′
ℓ − k′ℓ−1|), and the time spent waiting for each elevator when calling them from your

starting point, i.e.

∑p
ℓ=1 |fjℓ−k′ℓ−1|. The total waiting time is

∑p
ℓ=1(|fjℓ−k′ℓ−1|+2 · |k′ℓ−k′ℓ′−1|).

We note (i) that as all speeds are positive, you will never need to go twice through the same floor,

(ii) that using the same elevator twice is useless (better than using it twice a → b and a′ → b′,
you could have used it a→ b′), and (iii) that to move from a to b, you will always pick the nearest

available elevator, which will be at its initial position (since by (ii) you did not yet use it).

In the end, our problem is equivalent to finding the shortest-path between vertices s and d in the

following weighted graph G2 = (V2, E2, w2):

V2 = {1, . . . , n}
E2 = {(a, b) | j ∈ {1, . . . , k}, a ∈ Fj , b ∈ Fj , a ̸= b}

w2((a, b)) = min{|fj − a|+ 2 · |b− a| | j ∈ {1, . . . , k} ∧ a, b ∈ Fj}

As all weights are positive, we can use Dijkstra’s algorithm to find the shortest path. Its runtime

is O((|V2|+ |E2|) log |V2|). The number of vertices is |V2| = n and the number of edges is |E2| ≤∑k
j=1(|Fj |(|Fj | − 1)) = O(K). Hence, the overall complexity is O((n+K) log n).

(d) Continue the setting of (c). Elevator doors in your building need maintenance, but the people in

your building also need elevators. In your building, there is exactly one elevator door per elevator

and floor, which needs to be functional in order for the elevator to be used from or to this floor. Even

if a door is not functional, the elevator can still be used between all other floors where a functional

door is present. Alice wants to select as many elevator doors as possible to be maintained during

the next working day such that all floors can be reached from each other using the elevators and

the remaining functional doors (those not in maintenance).

Model the problem as a graph problem and provide an algorithm to solve it. Describe the vertex

and edge set, edge weights (if needed), the graph problem you solve, the algorithm you use, and

9

its complexity. To obtain full points, your algorithm should run in time O((n+K ′) log(n+K ′)),
whereK ′ =

∑p
j=1|Fj |.

Hint: Consider the set of vertices

V = {v1, . . . , vn} ∪ {w1, . . . ,wn} ∪ {elevator1, . . . , elevatorj}

and use subgraphs (“gadgets”) of the form

wi1

wi2

. . .

wiq

vi1

vi2

. . .

viq

elevatorj

0

0

0

1

1

1

where Fj = {i1, . . . , iq}.

Solution:

Call the gadget aboveGj . This gadget represents the inside of elevator j (elevatorj), its doors (wiℓ),

and the floors it serves (viℓ). To move from, say, floor s to floor d, you start at vs, use the door ws,

enter elevatorj that brings you to floor d, then use the door wd to leave the elevator, and end at

vd. Putting door wiℓ in maintenance removes the edge (viℓ ,wiℓ) from the graph, as this door is no

longer usable.

Consider G3 =
⋃k

j=1Gj . Finding the maximal number M of doors that you can that you can

maintain to ensure that all floors remain reachable from each other is equivalent to finding the

minimal number of doorsm = K ′−M that youmust keep in function to ensure the same property.

Now, the value m is exactly the value of the minimum spanning tree of G3. We can use, e.g.,

Kruskal’s algorithm to compute it, resulting in a O(|E3| log |E3|) runtime, where E3 denotes the

edge set of G3. Since |E3| =
∑k

j=1(2|Fj |) = 2K ′ = O(K ′), we get an overall complexity of

O(K ′ logK ′).

10

