
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 21 October 2024

Johannes Lengler, David Steurer

Kasper Lindberg, Lucas Slot, Hongjie Chen, Manuel Wiedmer

Algorithms & Data Structures Exercise sheet 5 HS 24

The solutions for this sheet are submitted on Moodle until 27 October 2024, 23:59.

Exercises that are marked by
∗
are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

The solutions are intended to help you understand how to solve the exercises and are thus more detailed

than what would be expected at the exam. All parts that contain explanation that you would not need

to include in an exam are in grey.

Exercise 5.1 Max-Heap operations (1 point).

(a) Consider the following max-heap:

82

63

43

24 27

54

10

61

19 48

Draw the max-heap after inserting the elements 70 and 51 in that order.

Solution:

82

70

43

24 27

63

10 54

61

51

19

48

(b) Consider the following max-heap:

36

27

23

11

9

5

12

8 10

31

14

6 3

25

1 17

Draw the max-heap after two ExtractMax operations.

Solution:

27

23

11

9 5

12

8 10

25

14

6 3

17

1

Guidelines for correction:

Award 1/2 point per correctly solved part.

Exercise 5.2 Guessing an interval.

Alice and Bob play the following game:

• Alice selects two integers 1 ≤ a < b ≤ 200, which she keeps secret.

• Then, Alice and Bob repeat the following:

– Bob chooses two integers 0 ≤ a′ < b′ ≤ 201.

– If a = a′ and b = b′, Bob wins.

– If a′ < a and b < b′, Alice tells Bob ‘my numbers are strictly between your numbers!’.

– Otherwise, Alice does not give any clue to Bob.

Bob claims that he has a strategy to win this game in 12 attempts at most. Prove that such a strategy

cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of Alice’s
answers, while each leaf corresponds to a win for Bob.

2

Hint: After defining the decision tree, you can consider the sequence k0 = 1 and kn = 2kn−1 + 2 for
n ≥ 1, and prove that kn = 3 · 2n − 2 for any n ∈ N0 = N ∪ {0}. The number of vertices in the decision
tree should be related to kn.

Solution:

The solution is divided into three parts: the construction of the decision tree, proving an upper bound

for the number of vertices in the tree and an argument about the non-existence of the required strategy.

We will show that Bob cannot cover all possible choices for a and b in twelve steps by comparing the

possible scenarios covered in the tree and the choices.

Construction of decision tree: Bob’s strategy can be represented as follows, where green arrows

correspond to a win, red arrows to ‘my numbers are strictly between your numbers!’, and black arrows

to the absence of a clue. The vertices that are not leaves in this tree correspond to the guesses he makes.

.

. . .

Each vertex of the corresponding tree has at most three children, of which one (corresponding to Bob

winning the game) has no child. The two others can again have three children with the same structure

as their parent.

Note that not all vertices need to have exactly three children since it is possible that after a sequence

of guesses Bob makes, not all answers of Alice are still possible for the next guess. For example, if he

figured out the numbers of Alice with certainty after some number of steps, the next vertex has only

one child (the one corresponding to Bob winning).

Upper bound for the number of vertices: The tree contains all possible scenarios of the game. The

depth is the number of guesses Bob needs to make in the worst case. Denoting by kn the maximum

number of vertices in a tree of depth n ∈ N0 of the above form, we see that{
k0 = 1

kn = 2kn−1 + 2 ∀n ≥ 1.

The second equality is true since for a tree of depth n for n ≥ 1, we have the root and a leaf (endpoint

of the green edge) as well as two subtrees of depth n− 1 of the same form (rooted at the endpoints of

the red and black edges).

We will now prove by induction that, for all n ∈ N0, we have kn = 3 · 2n − 2.

• Base Case.
For n = 0, we have k0 = 1 = 3 · 20 − 2, so the base case holds.

• Induction Hypothesis.
Assume that the statement holds for j ∈ N0, i.e., kj = 3 · 2j − 2.

• Inductive Step.
We compute

kj+1 = 2kj + 2 = 2 · (3 · 2j − 2) + 2 = 3 · 2j+1 − 4 + 2 = 3 · 2j+1 − 2.

3

Thus, the statement also holds for j + 1. By the principle of mathematical induction, we have

kn = 3 · 2n − 2 for any n ∈ N0.

Non-existence of the required strategy: We want to compare the number of pairs Alice can choose

and Bob can determine in 12 steps. Once Alice has chosen b, she has b − 1 possibilities for a (the

numbers in the set {1, 2, . . . , b− 1}). Thus, the total number of pairs Alice can choose is

200∑
b=1

(b− 1) =

(
200∑
b=1

b

)
− 200 =

200 · 201
2

− 200 = 19900.

In order for Bob’s strategy to allow him to win for any pair of integers chosen by Alice, the tree repre-

senting his strategy must have at least 19900 leaves (one for each choice of Alice). If Bob’s statement

is true (i.e. he wins after at most 12 turns), this tree has depth at most 12 and therefore at most k12
vertices. Since k12 = 12286 < 19900, the decision tree corresponding to Bob’s strategy cannot have

19900 leaves, hence Bob cannot certainly win in at most 12 attempts.

Exercise 5.3 Quick(?) sort (1 point).

Recall the pseudocode for the quick sort algorithm from the lecture:

Algorithm 1 quick sort

1: functionQuickSort(A, ℓ, r)
2: if ℓ < r then
3: k = Partition(A, ℓ, r)
4: QuickSort(A, ℓ, k − 1)
5: QuickSort(A, k + 1, r)

6: function Partition(A, ℓ, r)
7: i← ℓ
8: j ← r − 1
9: p← A[r] ▷ Choose the rightmost entry as pivot

10: repeat
11: while i < r and A[i] ≤ p do
12: i← i+ 1

13: while j > ℓ and A[j] > p do
14: j ← j − 1

15: if i < j then
16: Swap A[i] and A[j]

17: until i > j
18: Swap A[i] and A[r] ▷ At the end, the correct place for the pivot is i
19: Return i

We want to study the number of comparisons between array entries the quick sort algorithm performs

when we apply it to an array A[1 . . . n] consisting of n unique integers which is already sorted in

ascending order (so A[1] < A[2] < . . . < A[n]).

(a) Show that the number of comparisons T (n) between array entries that QuickSort(A, 1, n) per-
forms when applied to a sorted arrayA as above, and with the above rule to select the pivot satisfies

the recursive relation

T (1) = 0, T (n) = T (n− 1) + (n− 1) ∀n ≥ 2.

4

You may assume for simplicity that Partition(A, ℓ, r) always performs exactly r− ℓ comparisons

between entries. In your argument, refer to the pseudocode above.

Solution:

We note that, if A is a sorted array with unique entries, then for any ℓ, r with ℓ < r, the function
Partition(A, ℓ, r) does not perform any swap operations. Indeed, the pivot A[r] is strictly larger

than all other entries of A[ℓ . . . r]. Therefore, at the end of the two while-loops in Partition, the

index iwill equal r, and the index j will equal r−1. So, the condition of the if-statement will never

be met. After the repeat − until, the index i will be equal to r, and so ‘swapping’ A[i] and A[r]
at the end does not change anything.

Now, consider the call QuickSort(A, 1, n), with n ≥ 2. First, Partition(A, 1, n) is called. As we
have seen, this will return k = n, and make no changes to A. By assumption, it performs exactly

n−1 comparisons between entries. Then,QuickSort(A, 1, n−1) andQuickSort(A,n+1, n) are
called. The latter call immediately terminates. As A has remained sorted, the former corresponds

exactly to calling QuickSort(Ã, 1, n − 1) on a sorted array Ã of length n − 1. We conclude that

T (n) = T (n− 1) + (n− 1).

Finally, we note that the callQuickSort(A, 1, 1) immediately terminates, showing that T (1) = 0.

(b) Assume n ≥ 3. Show that T (n) = Θ(n2). To do so, first give an exact expression for T (n) based on
the recursive formula of part (a) (your exact expression does not need to be maximally simplified,

e.g., it is allowed to contain summation-symbols).

Hint: Based on the recursive formula from part (a), how could you write T (n) in terms of T (n− 2)?
How could you write it in terms of T (n− 3)? Repeat this process.

Solution:

By ‘telescoping’ the recursive relation from part (a), and using T (1) = 0, we find that

T (n) = T (n− 1) + (n− 1) = T (n− 2) + (n− 2) + (n− 1) = . . . =
n∑

i=1

(n− i) =
n−1∑
j=0

j.

Now, we see that

∑n−1
j=0 j ≤

∑n−1
j=0 n ≤ O(n2). On the other hand,

n−1∑
j=0

j ≥
n−1∑

j=⌊n/2⌋

j ≥
n−1∑

j=⌊n/2⌋

⌊n/2⌋ ≥
(
⌊n/2⌋ − 1

)2 ≥ Ω(n2).

See also Exercise 1.2. Alternatively, you could find an exact expression for

∑n−1
j=0 j using induction.

Guidelines for correction:

Award 1/2 point per correctly solved part.

(a) It is important that the argument refers to the pseudocode. It is not enough to just claim for

instance that Partition makes no changes to A. If the only mistake is that the case T (1) = 0 is
not mentioned explicitly, award 1/2 point.

(b) The telescoping argument is the most important part. From the exact expression, a very formal

argument that T (n) = Θ(n2) is not needed. For instance, a reference to an earlier exercise would
suffice.

5

Exercise 5.4 Building a Heap (1 point).

Recall that a binary tree is called complete if all of its layers are fully filled, except possibly the last layer,
which should be filled from left to right. A (max-)heap is a complete binary tree with the extra property

that for any node C with parent P ,

key(P) ≥ key(C). (heap-condition)

Also recall that for a tree T , the root is at level 0 and the leaves are at level height(T); for a node at
level ℓ, its children are at level ℓ+ 1.

In this exercise, we formally prove the correctness of the following algorithm from lecture, which

converts any complete binary tree into a heap.

Algorithm 2 Heap Construction

function Heapify(T)

for t = height(T)− 1, . . . , 0 do
for nodes N at level t do

for ℓ = t, . . . ,height(T)− 1 do
C1 ← the left child of N , if no such child exists assign it key −∞.

C2 ← the right child of N , if no such child exists assign it key −∞.

if key(C1) ≥ key(C2) and key(C1) > key(N) then
Swap the keys of nodes N and C1.

N ← C1

else if key(C1) < key(C2) and key(C2) > key(N) then
Swap the keys of nodes N and C2.

N ← C2

else
Exit inner for loop

Let T be a complete binary tree consisting of n nodes with n ≥ 2. Let H be the data structure that

results from executing Heapify(T).

(a) Prove that the executing Heapify(T) returns a valid heap.

Hint: Use the invariant I(t) for 0 ≤ t ≤ height(T): all nodes from levels height(T), . . . , t satisfy
the heap condition, namely key(P) ≥ key(C) where P is the parent node of level at least t, and C is
a child of P .

Solution:

We prove the invariant in the hint by mathematical induction on t (going in the opposite direction

of standard induction).

• Base Case.
We prove the statement I(t) is true for t = height(T). We have that all nodes from level

height(T) are leaves and hence are not parent nodes. Thus the invariant holds vacuously.

• Inductive Hypothesis.
Weassume the statement I(t) is true for some t ∈ N, height(T) ≥ t > 0, i.e. after height(T)−
t iterations of the outermost loop.

• Inductive Step.
We must show the statement I(t− 1) also holds.

6

By the inductive hypothesis all nodes from levels height(T), . . . , t satisfy the heap condition.

Now consider a node N at level t − 1. If it has no children then the node satisfies the heap

condition and we are done.

Otherwise, let C1 be its left child and C2 its right child if it exists, otherwise we assume

key(C2) = −∞. Our algorithm swaps they key of N with the key of the larger child if we

satisfy key(C1) > key(N) or key(C2) > key(N). Thus N now satisfies the heap condition

but the swapped childmay not. The innermost for loop however follows the swapped child and

repeats this process until either we have processed a node at level height(T)− 1 or the node
satisfies the heap condition. Since nodes at level height(T) are leaf nodes and not parents, we
do not need to consider these nodes. Thus any modified node along these sequence of swaps

still satisfy the heap condition and this includes our original node N .

Since we do this process on all nodes at level t − 1, this shows that the algorithm after this

loop iteration has all nodes from levels height(T), . . . , t − 1 satisfying the heap condition.

Thus I(t− 1) holds.

By the principle of mathematical induction, I(t) is true for all t ∈ N, height(T) ≥ t ≥ 0. In

particular, I(0) holds, which means that after the first height(T) iterations of the outer loop, the
nodes from levels height(T), . . . , 0 satisfy the heap condition. In particular, all nodes satisfy the

heap condition. This shows that after height(T) steps the binary tree is now a heap, which shows

correctness of the Heapify algorithm.

Guidelines for correction:

Award 1/2 point if base case and inductive hypothesis is correct, while inductive step is attempted

and on the right track but not fully correct. Award 1 point if inductive step is also correct.

(b)* Prove that the runtime of executing Heapify(T) takes time O(n).

You may use the fact that for any k ∈ N

k∑
i=1

i

2i
≤ 2 .

Hint: Write the runtime as an outer sum over the various levels and an inner sum over all the nodes
of that level.

Solution:

Define f(t) = height(T) − t. For each node N , the second for loop says that our algorithm

processes the subtree rooted atN exactly once. Lets analyze the runtime of the inner most loop on

this subtree.

Say our node N is at level t, then for its two children, we check if either are bigger than N and if

so, swap with the bigger one. Then we make this swapped child our newN and repeat downwards

until we either hit the bottom of the tree or our node satisfies the heap condition. In the worst case,

we hit the bottom of the tree, and since each intermediate height used only a constant number of

operations, we executedO(f(t)) number of comparisons and swaps. Thus for each nodeN at level

t, we use at most O(f(t)) steps.

7

Thus the total runtime is

height(T)−1∑
t=0

∑
N : node of level t

O(f(t)) ≤
height(T)∑

t=0

∑
N : node of level t

c · f(t) = c

height(T)∑
t=0

∑
N : node of level t

f(t)

for some c ∈ R+.

To further simplify this formula, we can bound the number of nodes at each level. For a binary tree,

we can see that there is at most one node at level 0, namely the root and each node has at most 2
children, so there are at most 2 nodes of level 1. Continuing this reasoning inductively, we can see

that there are at most 2t nodes of level t.

Thus for a fixed t we can bound the inner sum by∑
N : node of level t

f(t) ≤ 2tf(t) = 2t+f(t) f(t)

2f(t)
= 2height(T) f(t)

2f(t)

Then our original sum becomes

c

height(T)∑
t=0

∑
N : node of level t

h(t) ≤ c

height(T)∑
t=0

2height(T) f(t)

2f(t)
= c · 2height(T)

height(T)∑
t=0

f(t)

2f(t)

Note that our inner sum is just the hint but with reverse indexing, thus we can bound the sum by

2. This gets us

c · 2height(T) · 2 = 2c · 2height(T)

As height(T) ≤ ⌊log2(n)⌋, we can see that 2height(T) ≤ 2⌊log2(n)⌋ ≤ 2log2(n)+1 = 2n. Thus the

total runtime can be bounded by 2c · 2n ≤ O(n).

Data structures.

Exercise 5.5 Implementing abstract data types.

In the lecture, you saw how we can implement the abstract data type list with operations insert, get,
delete and insertAfter. In this exercise, the goal is to see how we can implement two other abstract

data types, namely the stack (german “Stapel”) and the queue (german “Schlange” or “Warteschlange”).

The abstract data type stack is, as the name suggests, a stack of elements. For a stack S, we want to
implement the two following operations; see also Figure 1.

• push(x, S): Add x on top of the stack S.

• pop(S): Remove (and return) the top element of the stack S.

The abstract data type queue is a queue of elements. For a queueQ, we want to implement the following

two operations; see also Figure 2.

• enqueue(x,Q): Add x to the end of Q.

• dequeue(Q): Remove (and return) the first element of Q.

(a) Which data structure from the lecture can be used to implement the abstract data type stack effi-

ciently? Describe for the operations push and pop how they would be implemented with this data

structure and what the run time would be.

8

x
push

pop

S

Figure 1: Abstract data type stack

x
enqueuedequeue

Q

Figure 2: Abstract data type queue

Solution:

We can use a linked list to implement a stack. The elements of the stack are saved as the keys

of the linked list in the same order as in the stack, where the first element of the list is the top

element of the stack. The operation push(x, S) adds a new element at the start of the list with key

x and pointer to the old start of the list. The pointer to the new start of the list is then a pointer to

the newly created element. The operation pop(S) accesses the first element of the list (we have a

pointer to this element) and returns it. We then set the pointer that saves the start of the list to the

pointer that is stored in the current first element. After this, we can delete the first element. For

both push(x, S) and pop(S), we only need to do a constant number of operations, so the run time

is O(1).

(b) Which data structure from the lecture can be used to implement the abstract data type queue effi-

ciently? Describe for the operations enqueue and dequeue how they would be implemented with

this data structure and what the run time would be.

Solution:

We can use a doubly linked list to implement a queue. The elements of the queue are saved as the

keys of the doubly linked list in the same order as in the queue. We assume that the pointer to the

start of the list points to the first element in the queue and the pointer to the end of the list to the

last element in the queue. The operation enqueue(x,Q) adds the new element at the end of the list

using the pointer to the end of the list. The operation dequeue(Q) accesses, returns and deletes the
first element in the queue using the pointer to the beginning of the list. For both operations we then

adjust the pointers accordingly, similar as we did in part (a) for the stack. The pointers we need

to change are the pointers of the last and the newly added element (for enqueue(x,Q)) and of the

second element (for dequeue(Q)) as well as the pointers to the start and end of the list. Since we

have pointers in both directions, we can access and change these elements in constant time. Thus,

both operations enqueue(x,Q) and dequeue(Q) have run time O(1).

9

