
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 11 November 2024
Johannes Lengler, David Steurer
Kasper Lindberg, Lucas Slot, Hongjie Chen, Manuel Wiedmer

Algorithms & Data Structures Exercise sheet 8 HS 24

The solutions for this sheet are submitted on Moodle until 17 November 2024, 23:59.

Exercises that are marked by ∗ are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

The solutions are intended to help you understand how to solve the exercises and are thus more detailed
than what would be expected at the exam. All parts that contain explanation that you would not need
to include in an exam are in grey.

We first recall some definitions from the lecture and introduce some new ones.

Definition 1. Let G = (V,E) be a graph.

• For v ∈ V , the degree deg(v) of v (german “Knotengrad”) is the number of edges that are incident
to v.

• A sequence of vertices (v0, v1, . . . , vk) (with vi ∈ V for all i) is a walk (german “Weg”) if
{vi, vi+1} is an edge for each 0 ≤ i ≤ k − 1. We say that v0 and vk are the endpoints (german
“Startknoten” and “Endknoten”) of the walk. The length of the walk (v0, v1, . . . , vk) is k.

• A sequence of vertices (v0, v1, . . . , vk) is a closed walk (german “Zyklus”) if it is a walk, k ≥ 2
and v0 = vk.

• A sequence of vertices (v0, v1, . . . , vk) is a path (german “Pfad”) if it is a walk and all vertices
are distinct (i.e., vi ̸= vj for 0 ≤ i < j ≤ k).

• A sequence of vertices (v0, v1, . . . , vk) is a cycle (german “Kreis”) if it is a closed walk, k ≥ 3
and all vertices (except v0 and vk) are distinct.

• An Eulerian walk (german “Eulerweg”) is a walk that contains every edge exactly once.

• A closed Eulerianwalk (german “Eulerzyklus”) is a closedwalk that contains every edge exactly
once.

• A Hamiltonian path (german “Hamiltonpfad”) is a path that contains every vertex.

• A Hamiltonian cycle (german “Hamiltonkreis”) is a cycle that contains every vertex.

• For u, v ∈ V , we say u reaches v (or v is reachable from u; german “u erreicht v”) if there exists
a walk with endpoints u and v, or equivalently, there exists a path with endpoints u and v.

• A connected component ofG (german “Zusammenhangskomponente”) is an equivalence class
of the (equivalence) relation defined as follows: Two vertices u, v ∈ V are equivalent if u reaches
v.

• A graph G is connected (german “zusammenhängend”) if for every two vertices u, v ∈ V , u
reaches v, or equivalently, if there is only one connected component.

• A graph G is a tree (german “Baum”) if it is connected and has no cycles.

Exercise 8.1 Introduction to graphs (1 point).

A group of n ≥ 3 people wants to play the following telephone game: A random player in the group is
given a message. The goal is to communicate this message to each member of the group. Each player is
allowed to make one phone call and receive one phone call. Furthermore, a player can only make calls
to other players who are in their contact list (you may assume that if player a is in the contact list of
player b, then player b is also in the contact list of player a).

In this exercise, we care about the following question: under what circumstances is it possible for the
group to win the game, regardless of the starting player? You may assume the group communicated a
strategy beforehand, and each player is aware of the contents of each other player’s contact list.

(a) Model the telephone game using a graph. Indicate carefully what the vertices and edges of this
graph are. Then, give a necessary and sufficient condition for the game to be winnable (regardless
of the starting player) using terminology from the lecture. Briefly argue the correctness of your
condition.

Solution:

We consider a graph G = (V,E) whose vertices {1, 2, . . . , n} represent the players, and whose
edges are

E = {{i, j} : player i has player j in their contact list}.

This edge set is well-defined because we assumed the contact lists are symmetric.

Because players are allowed to make and receive at most one call, a valid telephone game corre-
sponds to a path in G which starts at the vertex representing the starting player, and contains all
vertices, that is, a Hamiltonian path. For this reason, a necessary and sufficient condition for the
game to be winnable regardless of the starting player is:

For each v ∈ V, there is a Hamiltonian path in G which starts at v.

(b) Give an example of a situation where the game is winnable for some, but not all starting players.
Describe your example by drawing the graph that models it according to part (a).

Solution:

For example, we could look at the three player game described by a path graph:

Starting at either of the outer vertices, there is a Hamiltonian path, but there is no Hamiltonian
path that starts from the middle vertex.

(c) Someone claims the game is always winnable if the following conditions hold:

• Each player has at least two other players in their contact list;

• For any two players a and b, it is possible for the message to reach player b if player awas the
starting player.

2

Translate these conditions to your graph model of part (a) using terminology from the lecture. Then
show the claim is false when n = 5.

Solution:

Let G = (V,E) be the graph that models the telephone game as in part (a). The first condition
means that each vertex inG has degree at least 2. The second condition means thatG is connected.
To see that these conditions are not sufficient when n = 5, consider the following graph:

This graph is connected, and each vertex has degree at least 2. However, there is no Hamiltonian
path starting from the center vertex.

(d)* In a variant of the game for advanced players, the last person to learn the message has to call
back the starting player to let them know everything went according to plan. Model this advanced
telephone game using a graph as in part (a). Then, show that even if the (normal) telephone game is
winnable regardless of the starting player, this does not mean the advanced telephone game is also
winnable.

Hint: Look up the Petersen graph.

Solution:

Let G = (V,E) be the graph that models the telephone game as in part (a). The advanced tele-
phone game is winnable if and only ifG has a Hamiltonian cycle (the starting player is irrelevant).
To show the statement, we need a graph which does not contain a Hamiltonian cycle, but has a
Hamiltonian path starting at each of its vertices. It turns out that this property holds for the well-
known Petersen graph (see e.g. https://en.wikipedia.org/wiki/Petersen_graph) , which
can easily be checked by hand.

Guidelines for correction:

The exercise consist of the following elements:

• Definition of vertices and edges in part (a);

• Condition in part (a) + brief explanation;

• Example in part (b);

• Translation of conditions in part (c);

• Counterexample in part (c);

Award 1 point if all elements are correct; award 1/2 point if at least 3 elements are correct. If the initial
graph definition / condition in part (a) is (slightly) incorrect, you can still earn points for items (b), (c)
if the solution is consistent.

Exercise 8.2 Domino.

(a) A domino set consists of all possible
(
6
2

)
+ 6 = 21 different tiles of the form [x|y], where x and y

are numbers from {1, 2, 3, 4, 5, 6}. The tiles are symmetric, so [x|y] and [y|x] is the same tile and
appears only once.

3

https://en.wikipedia.org/wiki/Petersen_graph

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide like in the example below.

(b) What happens if we replace 6 by an arbitrary n ≥ 2? For which n is it possible to line up all
(
n
2

)
+n

different tiles along a line?

Solution:

We directly solve the general problem.

First, we find an equivalent problem that can easily be modeled as a graph problem. We note that we
may neglect tiles of the form [x|x]. If we have a line without them, then we can easily insert them, and
if we have a line with them, then we can just remove them. Thus, both problems are equivalent.

Then, we will model our modified problem as a graph problem. Consider a graph G with n vertices,
labeled {1, . . . , n}. Each domino tile [x|y] is represented by an edge between the vertices x and y. By
construction, the resulting graph G is a complete graph Kn. A complete line (of all tiles) corresponds
to an Eulerian walk in Kn. Thus, we need to decide whether Kn has an Eulerian walk or not. To this
end, we only need to check whether (i) the graph is connected, and (ii) expect for 2 vertices, all other
vertices have even degrees.

A complete graph is defined as a graph in which every pair of vertices is connected by an edge. As
every possible pair [x|y] exists as a domino tile, G is a complete graph.

Kn is obviously connected because it is a complete graph. If n is odd then all vertices have even degree
n− 1, and thus the graph is Eulerian. On the other hand, if n is even then all vertices have odd degree
n − 1. If n ≥ 4 is even, then there are at least 3 vertices of odd degree, and therefore Kn does not
have an Eulerian walk. Finally, for n = 2, the graph Kn is just an edge and has an Eulerian walk.
Summarizing, there exists an Eulerian walk if n = 2 or n is odd, and there is no Eulerian walk in all
other cases. Hence, it is possible to line up the domino tiles if n = 2 or n is odd, and it is impossible
otherwise. In particular, it is not possible for n = 6.

The fact that a connected graph has an Eulerian walk if and only if all except for 2 vertices have even de-
grees is very useful whenever we talk about Eulerian walks in graphs and you should always remember
this fact.

Exercise 8.3 Star search, reloaded.

A star in an undirected graphG = (V,E) is a vertex that is adjacent to all other vertices. More formally,
v ∈ V is a star if and only if {{v, w} | w ∈ V \ {v}} ⊆ E.

In this exercise, we want to find a star in a graph G by walking through it. Initially, we are located at
some vertex v0 ∈ V . Each vertex has an associated flag (a Boolean) that is initially set to False. We
have access to the following constant-time operations:

• countNeighbors() returns the number of neighbors of the current vertex

• moveTo(i)moves us to the ith neighbor of the current vertex, where i ∈ {1..countNeighbors()}

• setFlag() sets the flag of the current vertex to True

• isSet() returns the value of the flag of the current vertex

4

• undo() undoes the latest action performed (the movement or the setting of last flag)

Assume that G has exactly one star and |V | = n. Give the pseudocode of an algorithm that finds
the star, i.e., your algorithm should always terminate in a configuration where the current vertex is a
star in G. Your algorithm must have complexity O(|V |+ |E|), and must not introduce any additional
datastructures (no sets, no lists etc.). Show that your algorithm is correct and prove its complexity.
The behavior of your algorithm on graphs that do not contain a star or contain several stars can be
disregarded.

Solution:

Consider the following algorithm:

Algorithm 1 Star-finding algorithm
while countNeighbors() ̸= n− 1 do

setFlag()

for i = 1 to countNeighbors() do
moveTo(i)
if isSet() then

undo()

else
break

Proof of correctness: In the following, we say that a vertex ismarked if its flag is set to True. In each
iteration of the while loop, a new, previously unmarked vertex is explored (if the vertex was already
marked, the movement towards this vertex would have been undone).

Hence, in each iteration, either the current vertex has n − 1 neighbors and the algorithm terminates
(case 1), or the number of vertices to be explored decreases by exactly one (case 2), or the current vertex
has no unmarked neighbors and we loop forever on this vertex (case 3).

Whenever the algorithm reaches the star s ∈ V , it successfully terminates (case 1), since a vertex is a
star if and only if it has n− 1 neighbors. Now, the star s is, by definition, a neighbor of all vertices; in
particular, s is always a neighbor of the current vertex. Hence, for case 3 to occur, the star smust have
been previously marked. But this never occurs, since the algorithm always terminates when reaching
the star. Hence, only cases 1 and 2 can happen, and the number of unmarked vertices decreases by
exactly one in each iteration until the star is eventually reached. This proves the correctness of the
algorithm.

Proof of runtime: The cost of each iteration of the while loop is O(1) + O(1) +
∑deg v

i=1 (O(1) +
O(1) + O(1)) = O(1) + O(deg v), which sums up to at most

∑
v∈V (O(1) + O(deg v)) = O(|V |) +

O
(∑

v∈V deg v
)
= O(|V |) +O(2|E|) = O(|V |+ |E|) as every vertex is explored at most once.

There is actually a (faster and better) algorithmwith runtimeO(deg(v0))where v0 is the starting vertex.

5

Algorithm 2 Star-finding algorithm
if countNeighbors() = n− 1 then

break
for i = 1 to countNeighbors() do

moveTo(i)
if countNeighbors() = n− 1 then

break
else

undo()

Note that the above algorithm does not need to use flags at all. The algorithm first checks if the starting
vertex is a star. If yes, then we are done. Otherwise, the algorithm iterates over its neighbors and checks
if one of them is a star. If there is a star in the graph, then the algorithm is guaranteed to find it, as a
star is a neighbor of any other vertex. Since the algorithm only goes through the list of neighbors of
v0, the runtime is O(deg(v0)).

Exercise 8.4 Introduction to Trees.

In this exercise the goal is to prove a few basic properties of trees (for the definition of a tree, see
Definition 1).

(a) A leaf is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a
leaf.

Hint: Consider the longest path in G. Prove that its endpoint is a leaf.

Solution:

Consider the longest path P = (v0, v1, v2, . . . , vk−1, vk) in G. Let a be an endpoint of P , say
a = v0. A similar argument also holds for a = vk. We claim a is a leaf. Suppose for the sake of
contradiction that this is not true, i.e., the degree of a is at least 2 (since the tree has at least two
vertices, the degree cannot be 0). Hence, there exists a neighbor b of a such that b ̸= v1. Now,
consider the walk P ′ = (b, v0, v1, . . . , vk). This walk is longer than P , hence by choice of P , it
cannot be a path. Therefore, since b is the only new addition, there must exist an index i ∈ [k] such
that b = vi. But now, (b, v0, v1, . . . , vi) is a cycle in G, a contradiction.

(b) Prove that every tree with n vertices has exactly n− 1 edges.

Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf.
Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the
induction hypothesis and conclude.

Solution:

We proceed by induction on n.

Base case: When n = 1, there can only be 0 = n − 1 edges. When n = 2, there exists a unique
tree (two vertices connected by an edge), and that one has 1 = n− 1 edge. This completes the base
case.

Induction hypothesis: Assume that the hypothesis is true for every tree with n ≥ 2 vertices, i.e.
it contains n− 1 edges.

6

Induction step: We now show the property holds for every tree G = (V,E) with |V | = n + 1
vertices.

Let u be a leaf inG (it must exist by part (a)), and let v be u’s only neighbor in the treeG = (V,E).
Consider the graph G′ := (V \ {u}, E \ {u, v}). We first argue that G′ is a tree. Note, as the
induction hypothesis only applies to trees, we must first show that our modified graph is a tree.

We prove that G′ is connected: Let a, b ∈ V \ {u}. Since G is a tree, there exists a path P in G
with endpoints a, b. Note that the removal of u doesn’t affect this, as leaves can only be endpoints
in paths. Hence, P is also a path in G′, meaning a and b are connected in G′. Since a and b were
arbitrary, G′ is connected.

We prove that G′ has no cycles: To prove this by contradiction, we assume P is a cycle in G′. But
since G′ is a subgraph of G, P is also a cycle in G. However, G is a tree and thus cannot have a
cycle.

Therefore, G′ is a tree and contains |V \ {u}| = (n+ 1)− 1 = n vertices. Then, we can apply the
induction hypothesis and conclude |E \ {u, v}| = n− 1. Therefore, |E| = n, which completes the
induction step and the proof.

This inductive proof is an example for the fact that it is sometimes easier to argue about deleting
a vertex (in this case a leaf) from a graph instead of adding the n + 1-st vertex although adding a
vertex might seem to be the more intuitive approach to this task. This idea of adding a new leaf
to a tree on n vertices and then arguing that it contains n edges might seem easier at first glance,
however, it is important to note that here one further needs to show that any tree on n+1 vertices
can indeed be constructed by adding a leaf to a tree on n vertices, which is essentially what the
proof in our solution does. This is a recurring theme in the context of inductive proofs on graphs: in
the inductive step it is often easier to argue about deleting a vertex/edge etc. from a graph instead of
adding a vertex/edge to the graph arising from the induction hypothesis because with this approach
it is often harder to argue that any graph on n + 1 vertices can be constructed this way. The next
task is another example for this.

(c) Prove that a graph with n vertices is a tree if and only if it has n− 1 edges and is connected.

Hint: One direction is immediate by part (b). For the other direction (every connected graph with n−1
edges is a tree), use induction on n. First, prove there always exists a leaf by considering the average
degree. Then, disconnect the leaf from the graph and argue that the remaining graph is still connected
and has exactly one edge less. Apply the induction hypothesis and conclude.

Solution:

Suppose G is a tree. By definition, G is connected. By part (b), it has n − 1 edges. This completes
one direction of the implication.

We now prove the other direction. Suppose G is connected and has n − 1 edges. We proceed by
induction on n.

Base case: Let n = 1. The graph with a single vertex and 0 edges is trivially a tree. Let n = 2.
There exists one unique graph with 2 vertices and 1 edge, and that graph is also a tree.

Induction hypothesis: Assume every connected graph with n ≥ 2 vertices and n− 1 edges is a
tree.

Induction step: We now show the property holds for n+1. LetG = (V,E) be a connected graph
with n+ 1 vertices and n edges. The average degree in this graph is 2|E|/|V | = 2n/(n+ 1) < 2.
Hence, there must exist a vertex uwith degree 1, as no connected graph with at least 2 vertices can

7

have 0-degree vertices. Let u be this leaf and let v be u’s only neighbor in G. Consider the graph
G′ := (V \ {u}, E \ {u, v}). Clearly, G′ has n− 1 edges.

We prove that G′ is connected: Let a, b ∈ V \ {u}. Since G is connected, there exists a path P in
G with endpoints a, b. As in part (b), no path can contain a leaf except on its endpoints. Hence, P
is also a path in G′ and thus G′ is connected.

Therefore, we can apply the induction hypothesis onG′ and concludeG′ is a tree. Finally, we must
show that G is also a tree: We know that G is connected. Again, we show by contradiction that
G cannot contain any cycles. A cycle in G must be fully contained in G′ (since it cannot contain a
leaf), which is impossible since G′ is a tree. Therefore, G must be a tree and the property holds for
n+ 1.

(d) Write the pseudocode of an algorithm that is given a graph G as input and checks whether G is a
tree.

As input, you can assume that the algorithm has access to the number of vertices n, the number
of edges m, and to the edges {a1, b1}, {a2, b2}, . . . , {am, bm} (i.e., the algorithm has access to 2m
integers a1, . . . , am, b1, . . . , bm, where each edge of G is given by its endpoints ai and bi). You can
assume that the graph is valid (specifically, 1 ≤ ai, bi ≤ n and ai ̸= bi). The algorithm outputs
“YES” or “NO”, corresponding to whether G is a tree or not. Your algorithm must always complete
in time polynomial in n (e.g., even O(n10m10) suffices). You do not have to show the correctness
of your algorithm or what the running time of your algorithm is.

Hint: Use part (c). There exists a (relatively) simple O(n+m) solution. However, the official solution
is O(n ·m) for brevity and uses recursion to check if G is connected.

Example 1: n = 6
m = 5
a1, b1 = 1, 3
a2, b2 = 6, 1
a3, b3 = 3, 5
a4, b4 = 2, 3
a5, b5 = 4, 1

3

1

6 4

5 2

Output: YES

Example 2: n = 5
m = 4
a1, b1 = 1, 3
a2, b2 = 4, 5
a3, b3 = 5, 2
a4, b4 = 2, 4

4 5

2

3 1

Output: NO

Solution:

8

Algorithm 3
1: Input: integers n,m. Collection of integers a1, b1, a2, b2, . . . , am, bm.
2:
3: Let visited[1 . . . n] be a global variable, initialized to False.
4:
5: function walk(u) ▷ Find all neighbors of u that have not been visited and walk there.
6: visited[u]← True
7: for i← 1 . . .m do ▷ Iterate over all edges.
8: if ai = u and not visited[bi] then
9: walk(bi)

10: if bi = u and not visited[ai] then
11: walk(ai)

12:
13: walk(1) ▷ Find all vertices connected to 1.
14: connected← True if visited[·] = [True, True, . . . , T rue] and connected← False otherwise
15: if connected = True and m = n− 1 then ▷ Use the characterization from part (c).
16: Print(“YES”)
17: else
18: Print(“NO”)

This algorithm is built using part (c). It checks if the graph is connected by starting at a single
vertex and marking all reachable vertices. If all vertices are marked, we can conclude that the tree
is connected. Then we check the number edges. If |E| = n − 1, we use (c) and conclude that G is
a tree.

Exercise 8.5 Short questions about graphs (2 points).

In the following, let G = (V,E) be a graph, n = |V | and m = |E|.

(a) Let v ̸= w ∈ V and suppose that G is a tree. Prove that if P1 and P2 are paths that both start at v
and end at w, then P1 = P2.

Solution:

Let P1 = (v0, v1, . . . , vk) where v0 = v and vk = w; let P2 = (v′0, v
′
1, . . . , v

′
k′) where v′0 = v and

v′k′ ; suppose for sake of contradiction that P1 ̸= P2. Then let vi ∈ P1 and v′i ∈ P2 be the first vertex
in which they differ. Also let vj ∈ P1 and v′j′ ∈ P2 be the the next time after index i that the paths
coincide, meaning vj = v′j′ . There must be such indexes because vk = v′k′ = w.

Then consider the new walk

vi−1, vi, vi+1, . . . , vj−1, vj , vj′−1, . . . , v
′
i+1, v

′
i, vi−1.

Note by the minimality condition of the indexes j and j′, all vertices except the vi−1 are used once.
And since this is just subpaths of P1 and P2 stitched together where they meet, we know we have
a closed walk with all vertices except the beginning and end are distinct. But this means we have a
cycle, contradicting the assumption that G is a tree. Hence P1 = P2.

For each of the following statements, decide whether the statement is true or false. If the statement is
true, provide a proof; if it is false, provide a counterexample.

9

(b) If every vertex of G has at least ⌈n/2⌉ neighbors, then G is connected.

Solution:

This statement is true.
Suppose for sake of contradiction that a graph G with every vertex having degree ⌈n/2⌉ is not
connected. This means there are vertices u, v ∈ V which do not have a path between them. Let U
be the subset of vertices containing u and its neighbors and similarly V be the subset of vertices
containing v and its neighbors. By the degree condition, U must contain at least ⌈n/2⌉+1 vertices
and similarly for V . But thenU and V must overlap in some vertex because ⌈n/2⌉+1+⌈n/2⌉+1 >
n. Sayw is the overlapping vertex in both U and V , but then either {u, v} ∈ E or we can construct
a path u,w, v, which is a contradiction. Hence G is connected.

(c) If G contains a Hamiltonian cycle C , then any other Hamiltonian cycle of G must contain an edge
from C .

Solution:

This statement is false.
Consider the complete graph on 5 vertices,

Then the blue edges and red edges each correspond to Hamiltonian cycles which do not share any
edge.

(d) For every graph G with n ≥ 2, there must be at least two vertices with the same degree.

Solution:

This statement is true. Suppose for sake of contradiction that all vertices do not share the same
degree. As the degree of a vertex must be between 0 and n − 1 and we have n vertices, for every
0 ≤ i ≤ n − 1 there must exist some vertex with degree i. But then there is a vertex with degree
n − 1, meaning it has an edge to every other vertex. But this contradicts the fact that there must
also exist a vertex with degree 0. Hence, at least two vertices must share the same degree.

(e) Suppose in a connected graph G, for every path of length at least 2, the sum of the degrees of the
vertices in the path is even. Then G has an Eulerian walk.

Solution:

This statement is false. A counterexample is given by the following graph:

Then any path of length at least 2 must be a path of length 2 which goes from a degree-1 vertex,
to the center degree-4 vertex and back to a degree-1 vertex. Thus it satisfies the condition that the
sum of the degrees is even. However, for this same reason no Eulerian walk can exist since we must

10

start and end at degree-1 vertices as to not retrace the same edge, but there are more than 2 such
degree-1 vertices.

(f) Let G be a connected graph. Suppose that deleting any edge of G does not disconnect the graph.
Then deleting any vertex of G does not disconnect the graph. (When deleting a vertex, we also
remove all edges incident to the vertex.)

Solution:

This statement is false. Consider the graph on 5 vertices

Then one can check that deleting any one edge does not disconnect the graph, however, deleting
the middle vertex does.

Guidelines for correction:

For awarding the bonus points, each subexercise (except (a)) should be split into two parts, namely
one part is giving the correct answer and the other part is giving a correct proof or counterexample.
Subexercise (a) contains only one part, namely the proof of the statement. If at least 2 parts are solved
correctly, 1/2 points should be awarded. If at least 5 parts are solved correctly, 1 point should be
awarded. If at least 8 parts are solved correctly, 3/2 points should be awarded. If all 11 parts are solved
correctly, 2 points should be awarded.

11

