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F-vector spaces – where F is a field (R is only one of many fields)

A F-vector space1 is a triple (V ,+, ·) where V is a set (the vectors), and

+ : V × V → V a function (vector addition),
· : F× V → V a function (scalar multiplication),

satisfying the following axioms (rules) for all u, v,w ∈ V and all c , d ∈ F.

1. v +w = w + v commutativity
2. u+ (v +w) = (u+ v) +w associativity
3. There is a vector 0 such that v + 0 = v for all v zero vector
4. There is a vector −v such that v + (−v) = 0 negative vector
5. 1 · v = v identity element
6. (c ·d)v = c · (d · v) compatibility
7. c(v +w) = cv + cw distributivity over +
8. (c+d)v = cv + dv distributivity over + in F

1“real” stands for real numbers c ∈ R as scalars
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Fields

A field is a triple (F ,+, ·) where F is a set (the numbers), and

+ : F × F → F a function (addition of two numbers),
· : F × F → F a function (multiplication of two numbers),

satisfying the following axioms (rules) for all a, b, c ∈ F:
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! 1. a+ b = b + a commutativity of +

2. a · b = b · a commutativity of ·
3. a+ (b + c) = (a+ b) + c associativity of +
4. a · (b · c) = (a · b) · c associativity of ·
5. there is a number 0 such that a+ 0 = a for all a zero
6. there is a number 1 ̸= 0 such that a · 1 = a for all a one
7. There is a number −a such that a+ (−a) = 0 negative
8. If a ̸= 0, there is a number a−1 such that a · a−1 = 1 inverse
9. a · (b + c) = (a · b) + (a · c) distributivity
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Examples of fields
▶ R (real numbers)

▶ C (complex numbers)

▶ Q (rational numbers)

Non-examples:

▶ Z (integers): no inverses

▶ N (natural numbers): no negatives

Finite fields of prime order (very important in cryptography):

▶ Fp = ({0, 1, . . . , p − 1},+, ·), where p is a prime number.

a+ b = (a + b︸ ︷︷ ︸
+ in N

) mod p a · b = (a · b︸︷︷︸
· in N

) mod p

▶ p = 2 : F2 = ({0, 1},+, ·). The smallest possible field (every field has 0 and 1).

(a+ b) mod 2 :

+ 0 1

0 0 1
1 1 0

(a · b) mod 2 :

· 0 1

0 0 0
1 0 1

In all cases, the field axioms have been checked.
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The field F2: Calculating with bits (value 0 or 1)
Adding two bits: the logical exclusive or

+ 0 1

0 0 1
1 1 0

b1 + b2 =

{
1 if either b1 = 1 or b2 = 1
0 otherwise

= b1 XOR b2

Multiplying two bits: the logical and

· 0 1

0 0 0
1 0 1

b2 · b2 =
{

1 if b1 = 1 and b2 = 1
0 otherwise

= b1 AND b2

Adding more bits:

b1+b2+· · ·+bn =

{
1 if an odd number of bi ’s is 1
0 if an even number of bi ’s is 1

3 mod 2

=

0 + 1 + 1 + 0 + 1 = 1
1 + 0 + 1 + 1 + 1 = 0

=

4 mod 2
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For every field F, we have the F-vector space Fn (if F = R, this is Rn)

Vectors:


v1
v2
...
vn

, where v1, v2, . . . , vn ∈ F.

Vector addition:
v1
v2
...
vn

+


w1

w2
...
wn

 =


v1+w1

v2+w2
...

vn+wn

 , where + is the addition in F

Scalar multiplication:

c ·


v1
v2
...
vn

 =


c ·v1
c ·v2
...

c ·tvn

 , where · is the multiplication in F
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Bit vectors: elements of the vector space Fn
2

Fn
2 contains 2n vectors.

n = 3:


0
0
1




0
0
0




0
1
1



1
1
1




1
1
0



1
0
0




0
1
0




1
0
1



x

z

y

“Hamming cube”
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Linear combinations in Fn
2

λ1v1 + · · ·+ λivi + · · ·+ λnvn
↓
1 : take vi
0 : don’t take vi

Combinations are just sums of vectors (the ones we take).

Vectors are independent if we can only get 0 by taking none of them.

10
0

 ,

01
0

 ,

00
1


︸ ︷︷ ︸

independent

11
0

 ,

01
1

 ,

10
1


︸ ︷︷ ︸

dependent

:

11
0

+

01
1

+

10
1

 =

00
0



In R3, these three vectors would be independent!
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Systems of linear equations in Fn

Everything we do in Rn works the same way in Fn:

▶ Matrices

▶ Ax = b and Gauss elimination

▶ Inverse matrices

▶ Gauss-Jordan elimination

▶ Full solution of Ax = b (Week 7)

▶ . . .

Example (F5
2): solve for the bit vector x! Take columns 1, 3, 5

1
1 1
0 1 1
0 0 1 1
0 0 0 1 1



x1
x2
x3
x4
x5

 =


1
1
1
1
1



x1
x2
x3
x4
x5

 =


1
0
1
0
1


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Application: Game “Lights out!”

n × n grid of buttons (original game: 5× 5), some are on (yellow):

Pressing a button. . . switches it (on ↔ off) and all its neighbors.

Goal: Repeatedly press buttons until all are off!
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Lights Out! Solution

Done after this button!
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First solution step, mathematically

10 0 0

0 0

0 0 0 0

00000

0 0 0 0 0

11

1

1

1

+

0

0

0

0 0 0 0

0 0 0 0 0

00000

1

11

1

1

0 0

0

=

0

0 0 0

0

0 0 0 0 0

0 0 0 0 0

00000

1 1

1 1

1

vector in F25
2 “button vector” b7 in F25

2 vector in F25
2
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Second solution step, mathematically

0

0 0 0

0

0 0 0 0 0

0 0 0 0 0

00000

1 1

1 1

1

+

0

0

0 0 0 0

0 0 0 0 0

00000

1

1

0 1

0

0

0

0 0

= 00000

00000

00000

00

0

0 0

0

1

1 1 1

vector in F25
2 “button vector” b5 in F25

2 vector in F25
2
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Lights Out, mathematically

Given a vector v ∈ F25
2 , produce 0 ∈ F25

2 by adding suitable button vectors!

Same problem (“play the game backwards”): starting from 0, produce v by adding
suitable button vectors!

10 0 0

0 0

0 0 0 0

00000

0 0 0 0 0

11

1

1

1

v

=

0

0

0

0 0 0 0

0 0 0 0 0

00000

1

11

1

1

0 0

0

b7

+

0

0

0 0 0 0

0 0 0 0 0

00000

1

1

0 1

0

0

0

0 0

b5

+

0

0

0 0 0 0

0 0 0 0 0

00000

1

0

00

11

1 0

0

b3

No button vector is needed twice (bi + bi = 0, no effect).

Order of button vectors doesn’t matter (commutativity)!
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Lights Out: A system of linear equations in F25
2 !

To win the game with initial configuration v ∈ F25
2 , solve

v = x1b1 + x2b2 + · · · x25b25

with all xi ∈ F2 (0 or 1).

This is a system of linear equations with 25 equations in 25 unknowns: | | |
b1 b2 · · · b25
| | |


︸ ︷︷ ︸

matrix A,25×25

x = v

This system has been analyzed [AF98]:

▶ The matrix A is quadratic but not invertible.
▶ Using Gauss-Jordan elimination, we can still solve this system.
▶ This allows you to win Lights Out whenever this is possible (it isn’t always)!
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