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Solution for Assignment 10

1. a) Consider the matrix M := AB. We claim that it has rank(M) = n. To see this, observe
that rank(B) = n implies C(B) = R" because n is also the number of rows of B. Hence,
we get C(M) = C(A) (and therefore rank(M) = rank(A) = n). Finally, we can use
Proposition 5.5.9 to get (AB)" = MT = BT AT,

b) Let A = CR be the CR decomposition of A with C € R™*" and R € R"™*" where
r = rank(A). Observe that C' has full column rank and that R has full row rank. Using the
definition of the pseudoinverse, we compute

ATAAY = (CR)TCR(CR)" = RT(CTC)(RRCT = RTCT = AT
where we used that R is a right inverse of R and C a left inverse of C.

¢) Assume first that A has full column rank n = rank(A). In this case, we have AT =
(ATA)"'AT by definition of the pseudoinverse for matrices with full column rank. More-
over, notice that AT has full row rank and hence we also get (AT)T = A(ATA)~! by
definition of the pseudoinverse for matrices with full row rank. Hence, we get

(ANT = ((ATA)TTANT =A((ATA) )T =4(ATA) ") = AT = @ANl
We conclude that the statements holds for all matrices with full column rank.
Analogously, we can prove that the statement holds if A has full row rank m = rank(A). In
that case, we have AT = AT(AAT) ' and (AT)T = (AAT)~1 A. Hence, we indeed get
(ANT = (AT(AAT) T = ((AAT) ) TA=((44T)) 1A= (AAT) 1A= (AT
We conclude that the statement holds for all matrices with full row rank.

It remains to prove the general case, i.e. we do not assume anymore that A has full row rank
or full column rank. Then by definition, we have AT = R'CT where A = CRis a CR
decomposition of A. In particular, we have C' € R™*" and R € R"*" where r = rank(A).
Now observe that we also have AT = RTCT with RT € R™*" and CT € R"™"™ and of
course, 7 = rank(A) = rank(A"). Hence, we can use Proposition 5.5.9 to get (A7) =
(CTYT(RT)!. We conclude that

(AN =N RN = (N’ = (RICHT = (aNT
by using that C' has full column rank and R has full row rank and hence (C'T) = (C)T and
(RN = (RN
d) Let A = CR be a CR decomposition of A with C' € R™*" and R € R"™*" where r =
rank(A). We can rewrite

Prop. 5.5.2

A'A = (CR)'CR = R'C'CR R'IR=R"(RR")'R

and hence we conclude symmetry of AA' since
(ATAT = R"(RRH'R)T=R"(RR"Y™H'TR=R"(RR")") 'R=RT(RR")"'R= ATA.

By Theorem 5.2.6, the matrix R' (RR")™'R = At A is exactly the projection matrix onto
the subspace C(R") = R(R) = R(A) = C(A") (the equality R(R) = R(A) is due to the
observation that R can be obtained from A through row operations and deleting 0-rows, and
by recalling that row operations preserve the row space).



2. We provide two solutions.

¢ In this first solution, we solve this by using our knowledge on pseudoinverses. Consider the
function f~! : C(A) — C(AT) given by f~!(x) = Afx for all x € C(A). Observe that
the composition f~! o f is the identity: we know from Exercise 1 that AT A is the projection
matrix that projects vectors onto the subspace C(A "), and hence we have

FN () = ATAx = x

for all x € C(AT). This already implies that f is injective. Observe that with an analogous
argument we get

F(F (%) = AATx = x
for all x € C(A). Hence, f~! is injective as well which implies that both f and f~! are
bijective.
Note that the matrix A A is in general not the identity matrix. It is crucial that the function
f is only defined on C(AT) and not on all of R".

+ In this second solution, we start by proving injectivity. For this, let x;,xo € C(AT) be
arbitrary and assume that f(x;) = f(x2). We want to argue that this implies x; = xa.
Observe that we have

0= f(x1) = f(x2) = A(x1 — x2)
and therefore x; —x2 € N(A). Together with C(AT)NN(A) = {0} andx; —x3 € C(A "),
we conclude x; — x9 = 0 and hence x; = Xs.

It remains to prove surjectivity. Let y € C(A) be arbitrary. By Theorem 5.1.10, we know
that there exists x € C(A ") suchthat {z € R? : Az =y} = x+N(A) (the theorem applies
because the set is non-empty since y € C(A)). In particular, we have f(x) = Ax =y, as
desired.

3. Forevery k € {1,...,n— 1}, we define S,,_ = {1,...,n — k}.

Our strategy is as follows: We first prove inductively that proj Sn_j(P) is a polyhedron for all
1 < j < n. This will then allow us to generalize the proof of Lemma 5.6.4 accordingly.

* For the base case j = 1, observe that projg, . (P) by Theorem 5.6.3.

* Thus, fix now an arbitrary n > j > 1 and assume that proj s (P) is a polyhedron for
j" = j — 1 (induction hypothesis).

* Under the above assumption, we want to prove that proj Su_; (P) is a polyhedron. Indeed,
we know that from the induction hypothesis that () := proj S, (P) is a polyhedron. Using

Theorem 5.6.3 on (), we hence conclude that proj S, (P) is a polyhedron as well.

It remains to prove

projs,_,(P) = projg, . (projg, _, (P)).
for all indices 1 < k < j < n. Let j, k be arbitrary such indices. Observe first that the expression
projs,_, (projg, _, (P)) is now valid because we proved that projg , (P) is a polyhedron (and
projections are defined on polyhedra).

Consider first an arbitrary z € projg, __(P). By definition of projg, _ (P), there exist2y—j 41, ..., 2n €
R such that the vector

[zl cee o Bn—j Tp—j41 - .Z‘n]TERn

isin P. By definition of projg _ (P), this directly implies that the vector
T _
[21 cee Znej Tpejgl .- xn_k] e R
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isin projg _, (P). Using the definition of projg__ . (projg _, (P)), we conclude thatz € projg . (projg _, (P)).

J J

For the other direction, consider now an arbitrary vector z € projg, _(projg, _, (P)). By definition

of projg, _.(projs,_, (P)), there exist @y—j+1, ..., 2n—k € R such that the vector
T —k
[Zl cee Zp—j Tp—jtl .- l‘n_k] eR"
isin projg _, (P). Now using the definition of projg _, (P), there must exist T, j11,...,Z, € R

such that the vector .
[21 s Zp—j Tp—jtl .- SCn] e R"

is in P. We conclude that z € projg, __(P) by the definition of projg, _ (P).

. In the lecture, it was already proven that, given an arbitrary polyhedron P C R" for some n, we
have projg . (P) C P® foralli € [n] and that P() C projs ., (P). We can use this as base case
and proceed by induction over 1.

Fix an arbitrary ¢ > 1 and assume as induction hypothesis that we have P~ = proj Sn_sir(P)
for all polyhedra P C R" wheren > n — ¢ + 1.

In the induction step, we want to prove that we also have P(") = proj s, (P) for all polyhedra P C
R™ with some n > ¢. Thus, let P be an arbitrary such polyhedron and consider the polyhedron
P’ = projg, .. (P)C R"~"+1. Applying the base case for P’ yields projg . (P') = P'V). Fur-
ther, we know from Lemma 5.6.4 that projg . (P') = projg, ,(projg, ,.,(P)) = projg, ,(P).
It remains to prove P() C P'(1) Using the induction hypothesis, we indeed observe that P/(1) =
(P11 = PG where the equality (P¢~1))1) = PO follows from Definition 5.6.5.

. Assume that P} = {x € R? : Ajx <bj}and P, = {x € R? : Ayx < by} for some Ay, Ay €
Q™*? and by, by € Q™ and natural number m (without loss of generality we can achieve that the
two polyhedra have the same number of constraints by just repeating some constraints). Observe

that the system
A1 b1
<

has no solution by our assumption P; N P, = (). Hence, Farkas lemma implies existence of a vector
y € R withy >0,y " [Al] =0,andy " [bl] < 0. Lety;,y2 € R™be such thaty = [}ﬂ}
Az b y2
A .
Observe that y " [A;] = 0 can be rewritten as leAl + yQTAg = 0 and hence leAl = —yQTAg.
Similarly, we get y{ by < —y3 ba.

Now define v := y; A4; € R? and w := y{ by € R. Weclaim that P, C {x € R? : x-v < w}
and P, C {x € R? : x-v > w}. To prove this, let first x € Py be arbitrary. Then A;x < by.
Using y; > 0, we hence get y{ A;x < y{ by and thus x € {x € R? : x-v < w}, as desired.
Thus, let now x € P, be arbitrary. Then Asx < by. By yo > 0 we again get y; Aox <
y3 ba. Using our previous observations, we can rewrite this as —y] A1x < yJ by < —y{ by.
Multiplying both sides with —1 yields x € {x € R? : x - v > w}, as desired. This concludes the
proof.



