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Linear Algebra HS 2024

Solution for Assignment 6

Since H is a hyperplane, there exists a non-zero vector d € R™ such that H = {v € R™ :
v -d = 0}. In order to prove that H is a subspace of R", we have to prove that H is non-
empty and closed under vector addition and scalar multiplication. By definition, 0 € H and
hence H is non-empty. It remains to prove that, given arbitrary v,w € H and ¢ € R, we
also have (v + w) € H and cv € H. Indeed, we observe

(v+w)-d=v-d+w-d=0+0=0
and hence (v + w) is in H. Similarly, we have
(cv)-d=¢(v-d)=c0=0
and therefore (cv) € H. We conclude that H is a subspace of R™.

Let H= {v € R™ : v-d = 0} for some non-zero d € R™. Consider the standard unit
vectors ey, ...,e, € R™ and let d; := e; - d for all i € [m]. Observe that we must have
d; # 0 for some j € [m], because d is non-zero. For every i € [m], define the vector

v, =e; — g—;ej. We claim that the set of vectors {v; : i # j} is a basis of H.

To prove this, observe first that the set of vectors {v; : ¢ # j} is linearly independent:
Indeed, each of the vectors controls its own coordinate (namely ¢) and hence there is no way
of obtaining the vectors 0 by a non-trivial linear combination of vectors in {v; : i # j}.
Next, observe that, by definition, we have

d,
vi-d=e;-d— —ej-d=d; —d; =0

d;
foralli € [m]\{j}, and thus {v; : i # j} C H. It remains to prove that the vectors span all

of H.Letu=[uy uz ... up) T e R™bean arbitrary vector withu-d = Y7 | u;d; =
0. Observe that this implies Zie[m}\{j} u;d; = —u;d;. Using this, we get

Z U Vi = Z ui(ei — %ej)

ic[m]\{j} i€[m]\{j} I
= Z u;€; — ( Z uld,) %ej
ie[m)\{5} i€[m)\{5} J
= Z U;€; + U;€;
ie[m]\{j}
—u,

which means that u € Span{v; : i # j}. This proves that {v; : i # j} is a basis of H, and
we concldue that the dimension of H is m — 1.

Note that precise notation is very important here: f € V' is a function and we write f(z) € R
for the value of f evaluated at point € [0,1]. In particular, f and f(z) are very different
types of objects. Note that the symbol + is overloaded in the following sense: for two
functions f,g € V and x € [0, 1], the + in the expression f(z) + g(x) denotes the normal
addition of real numbers while the + in the expression f 4 g is the addition of functions
defined in this exercise.



First, note that U is non-empty since every constant function is in U. Thus, consider arbitrary
functions f, g € U and scalar ¢ € R. For any x € [0, 1], we have

(f+g)(x) <

and therefore the function f 4+ g is in U. Similarly, we have

def

£(2) +g(@) & (1 -2)+g2) 5E t(1—2)+g(1—2) € (£ +g)(1 - 2)

(cf)(2) ¥ cf(z) "< ef (1 — 2) & (cF)(1 - 2)

and hence cf € U. We conclude that U is indeed a subspace of V.

2. Let H be the hyperplane H = {u € R™ : u-v = 0}. By exercise 1b), we know that H has

dimension m — 1. Letay,...,a,,—1 € H be a basis of H. We define the matrices

...oal L. R 1 LA
A; = [ 0% ] e R™™, B;= [ ol } € R¥*m
for every i € [m — 1]. Observe that we have A;v = 0 and B;v = 0 and thus 4;, B; € SV for
all i € [m — 1]. We claim that the matrices A1,..., Ap—1, Bi, ..., By—1 form a basis of SV. In
order to prove this, we first argue that they are linearly independent: For this, consider an arbitrary

linear combination
m—1 m—1
Z NiAi + Z wiB; =0
i=1 i=1

with A;, pi; € Rforalli € [m—1]. Observe that, by definitionof 4;,..., A;,—1and By, ..., By_1,
this implies Z:Z_ll Aia; = 0 as well as Zﬁ_ll w;a; = 0. Since ay, ..., a,,— are linearly inde-
pendent, we conclude that Ay = -+ = X\, = 0and y; = --- = um—1 = 0. Hence, our set of
matrices must be linearly independent. It remains to prove that our set of matrices spans SV. For
this, let C' € SV be arbitrary with
o [ f } |
2

The condition Cv = 0 implies ¢c; - v = 0 and c3 - v = 0 and therefore c;,co € H. Hence,
there exist scalars \1,..., A\,—1 € R and py, ..., um—1 € R such that Z;’;l \;a; = c¢1 and
Z;’Zl (;a; = co. We conclude that

m—1

C = Z (/\zAz + MiBi)

=1

and thus C' € Span(Ay,...,Ap—1,B1,...,Bn_1), as desired. This proves that our set of matri-
ces is a basis and we conclude that the dimension of SV is 2(m — 1).

3. We want to prove that U U W is a subspace of V ifand only if U C W or W C U.

113

113

<7 IfU C W,then U UW = W is a subspace of V' by assumption. The same reasoning applies
in the case W C U.

= ” Assume now that U U W is a subspace of V, and assume that W & U (otherwise, we are
done). Then there exists w € W\ U. Let u € U be arbitrary. Observe that, since U UW is a
subspace, we must have u+w € UUW. Butu+w € U would imply that w = (u+w)—u
isin U as well. Hence, we conclude u +w € W. By w € W and u +w € W we finally
obtain u = (u+ w) — w € W. We have proven that every vector in U is also in W, and
thus conclude U C W.



4.

S.

Recall that the dimension of a subspace is defined as the size of a basis of that subspace. So to
solve this exercise, it suffices to come up with a basis of S,,,. It might be instructive to first consider
the case m = 2. In the case of S, the three matrices

10 0 0 01

0O 0o |0 1| |1 O
form a basis: None of the matrices can be obtained from the others because each of the three
matrices has a non-zero entry at a place where none of the other matrices has a non-zero entry

(i.e. the three matrices are linearly independent). Moreover, every symmetric 2 X 2 matrix can be
obtained as linear combination of those three matrices because it must have the form

e R R R R

for some a, b, d € R (i.e. the three matrices span all of S).

This idea generalizes to S,,. In particular, for i, j € [m] with i < j, define the m x m matrix B (i)
by
1 if{=dandk =7
BW ={1 ift=jandk=i

0 otherwise

for all £,k € [m)]. Observe that for i = j, B() contains a single 1 on its diagonal and is zero
everywhere else. For i < j, we find exactly two 1s in B(7) and zeroes everywhere else. We claim
that the set of matrices

B={B%" :ijemli<;j}
is a basis of S,,.
(i) _
i =1
but none of the other matrices in the set has a non-zero entry at position (4, j). So B() cannot
be obtained as a linear combination of the other matrices. We conclude that set of matrices B is
independent.

We first check linear independence. Let ¢,j € [m] with i < j be arbitrary. Then B

Let now S € S, be an arbitrary symmetric m X m matrix. For all ¢, € [m], we must have
Sij = Sj; by symmetry. Thus, we can write

S= > §;BW
i,je[m]:i<j
and therefore we conclude that B spans all of S,,,.

. Hence, the dimension of S,,, is m(";rl) .

Finally, observe that |B| = 1+243+---+m = W

a) Note that the function 0 : z € R — 0 is both in O and E. Hence, both sets are non-empty.
Thus, it remains to prove that both O and E are closed under vector addition and scalar
multiplication. We start with O. Let f, g € O and ¢ € R be arbitrary. We have

(f +g)(—2) = f(—2) + g(—2) = —f(z) — g(z) = —(g + f)(z)
for all x € R and hence f + g € O. Similarly, we have
(cf)(—a) = cf (—x) = —cf () = —(cf)(2)

for all z € R which proves cf € O. We conclude that O is a subspace of V.



We proceed analogously for E. Let f, g € E and ¢ € R be arbitrary. We have
(f+g)(—2) = f(—2) + g(—2) = f(z) + g(x) = (g + f)(2)
for all x € R and hence f + g € E. And also
(cf)(~2) = ef(~2) = cf() = (cf)(2)
for all x € R which proves cf € E. We conclude that F is a subspace of V.

b) We already know that O is in both O and E and therefore 0 € O N E.

Now consider an arbitrary function f € O N E and fix € R. By definition of O, we have
f(—z) = —f(z). By definition of F, we also get f(—x) = f(x). We conclude that we must
have —f(z) = f(x). But this implies f(z) = 0. Since this works for any x € R, we conclude
that f must be the zero function 0. Hence, O is the only function in O N E.

¢) Let f € V be arbitrary and define

a(x) = 5 (F(x) + £(~2))

h(z) = 3 (F(r) — ()

for all z € R. Observe that we have f = g + h. It remains to prove g € F and h € O: For
all x € R we have

B(~2) = 5(F(—) + £(~(~0))) = 5 (E(z) + £(~2)) = g(a)
and hence g € E. Similarly, we have

1 1

h(—) = 5 (F(~2) — £(~(~))) = 3 (F(~x) — £(x) = 5 (£(z) ~ £(~)) = ~h()

for all x € R. Hence, h € O.

6. The subspace Span(p,q,r) has dimension 3. We will prove this by showing that p,q,r are
linearly independent and hence a basis of Span(p, q,r). For this, let A, iz, v € R such that Ap +
uq + yr = 0. If we can prove that this implies A = 1 = v = 0, we can conclude that the three
polynomials p, q, r are linearly independent.

Since p is the only one of the tree polynomials involving a non-zero coefficient for 3, we must
have A = 0. This further implies that we have uq + yr = 0. Since r has a non-zero coefficient
for !, but p does not, we next observe that we must have v = 0. This means that we are left with
©q = 0 and hence p = 0.

We conclude that there is no non-trivial linear combination of p,q,r € R|z| that yields 0 €
R[z]. Therefore, the three polynomials are linearly independent. By definition, p,q,r span
Span(p, q,r) and we conclude that they are a basis of size 3. This proves that the dimension
of this subspace is 3.



7. 1. Let Uy, Us be arbitrary subspaces of R™. Which of the following subsets of R must be
subspaces of R™ as well?

(@ U;NU;
Explanation: For vectors u, v € U;NU; and a scalar ¢ € R we need to prove thatu+v € UiNU;
and cv € Uy NUs. Byu,v € Uy NUs, we also get u,v € U; and u,v € Us. Since U; and Uy

are subspaces, this implies u+ v € Uy, cv € Uy, u+ v € Uy, and cv € Us. Hence, we also have
ut+veU NUyandcv € U NU,.

by U1Ul,
Explanation: The set U; U Us is in general not a subspace of R™. For example, U; and Us could

be distinct hyperplanes of R™. Then, by exercise 1, both U; and U, are subspaces of IR"* but
adding a vector u; € U; with a vector ug € Us can take us outside of Uy U Us.

(©0 U1 \Uzy:={ueclU;:u¢Us}

Explanation: The set U; \ Uz can never be a subspace because the 0 is missing.
d o

Explanation: By definition, a subspace has to be nonempty.

(e) {0}

Explanation: Adding any two vectors from {0} gives us 0 again. Similarly, multiplying with a
scalar always gives us 0 as well.

® U+U;:= {u1+u2:u1 €U17112€U2}

Explanation: The set U; + Us is a subspace by design. Consider arbitrary vectors u, v € Uy + Us
and scalar ¢ € R. By definition of U; + Us, we can write u = u; +up withuy € Uy and up € Us.
Similarly, we can write v = v + vo with v; € U; and vy € Us. Then we have

u+v=(u+u)+ (vi+va) = (ug +vi)+ (ug +vo) € Uy + Us

and
cv = c(vy + va) = (evy) + (eva) € Uy + Us.



2. Consider the vectors

Vi = and Vo =

O R
N B |

Which of the following sets of vectors is a basis of R*?

(@)
1 0 0
0 1 0
Vl ) V2 y _ 2 Y 2 Y O
0 0 1
A set of 5 vectors from R* can never be linearly independent. Hence, this is not a basis.
(b)
0 0
1 0
Vi, V2, 0l 0
0 0
The zero vector is linearly dependent on all other vectors. Hence, this is not a basis.
(©)

[en B an R R
o O = O

These 4 vectors are linearly independent. If we put them as columns into a matrix A, then A will have full rank.
By the inverse theorem, the system Ax = b will have a unique solution for all b € R*. Thus, C(A) = R* or
in other words, the four vectors span all of R*. Thus, they are a basis of R*.



3. Which of the following matrices are in row echelon form?

10
@ 1|0 0
0 0

S = N

4
5
0
Not in row echolon form because of the 2 in the first row.

10
by |0 1
00

O = N

4
5
0
This is in row echolon form. There are two pivots, one in the first column and one in the second column.

10
(¢) 0 0
0 0

o = O

4
)
0
This is in row echolon form. The pivots are in the first and third column.

1 0 2 4

(d) 01 15

0 010

Not in row echolon form because the 1 and 2 in the first and second row of the third column have not been

eliminated.



