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Week 13: Repeated eigenvalues, symmetric
matrices and the spectral theorem



Eigenvalues, eigenvectors: summary

Summary: Let A ∈ Rn×n

If (λ ,v) is an eigenvalue-eigenvector-pair of A, then (λ̄ , v̄) is an
eigenvalue-eigenvector-pair of A.
The eigenvalues of A and AT are the same, not so the corresponding
eigenvectors.
If A is invertible and (λ ,v) is an eigenvalue-eigenvector-pair of A, then
(1/λ ,v) is an eigenvalue-eigenvector-pair of A−1.
The eigenvalues of A+B are not the sum of eigenvalues of A and B.
The eigenvalues of AB are not the product of eigenvalues of A and B.
Gaussian Elimination doesn’t preserve eigenvalues and eigenvectors.
Let Q ∈ Rn×n be an orthogonal matrix., i.e., QT Q = I. If λ ∈ C is an
eigenvalue of Q, then |λ |= 1.

Theorem
Let A ∈ Rn×n with n distinct real eigenvalues. There is a basis of Rn, v1, . . . ,vn,
made up of eigenvectors of A.
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Repeated Eigenvalues

Repeated eigenvalues can pose an obstacle to building a basis.
We have shown that if A ∈Rn×n has n distinct real eigenvalues, then there is a
basis of Rn made up of eigenvectors of A. But what if not?

Example

A =

[
0 1
0 0

]
does not have two linearly independent eigenvectors.

det(A−λ I) = λ 2 which means that λ = 0 is the only eigenvalue and has
algebraic multiplicity 2. However, N(A−0I) = N(A) only has dimension 1,
so there is only one linearly independent eigenvector.

A =

[
0 0
0 0

]
has two linearly independent eigenvectors.

det(A−λ I) = λ 2 which means that λ = 0 is the only eigenvalue and has
algebraic multiplicity 2. N(A−0I) = N(A) has dim. 2.
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How to proceed?

Definition

Let A ∈ Rn×n. If one can build a basis of Rn with eigenvectors of A we say that
A has a complete set of real eigenvectors.

When do we have a complete set of real eigenvectors?
A matrix with n distinct real eigenvalues always has a complete set of real
eigenvectors.
For D ∈ Rn×n a diagonal matrix, the eigenvalues of D are the diagonal
entries of D. The canonical basis e1, . . . ,en is a set of eigenvectors of D.
When there is an eigenvalue λ with algebraic multiplicity larger than 1, it
can be that N(A−λ I) is of large enough dimension to find enough
linearly independent eigenvectors.

Definition
Given a matrix A ∈ Rn×n and an eigenvalue λ of A we call the dimension of
N(A−λ I) the geometric multiplicity of λ .
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When do we have a complete set of real eigenvectors

Observation
If the geometric multiplicities equal the algebraic multiplicites of all
eigenvalues, then such a matrix has a complete set of eigenvectors. (Note the
eigenvectors corresponding to distinct eigenvalues are l.i.)

Proposition
Let P be the projection matrix on the subspace U ⊆ Rn. Then P has two
eigenvalues, 0 and 1, and a complete set of real eigenvectors.

Proof.
Let m be the dimension of U. Let u1, . . . ,um be an orthonormal basis of U, and
w1, . . . ,wn−m an orthonormal basis of U⊥.

Puk = 1uk for 1 ≤ k ≤ m and Pwk = 0wk for 1 ≤ k ≤ n−m.

Hence, all n vectors are eigenvectors of P (with eigenvalues 1 or 0).
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Can we use this theory for diagonalizing a matrix?

The idea:
Let A ∈ Rn×n and assume that A has a complete set of real eigenvectors.
For i ∈ {1, . . . ,n} let λi be the eigenvalue associated with eigenvector vi .
This fact allows us to write x ∈ Rn as

x =
n

∑
i=1

αivi ⇒ Ax =
n

∑
i=1

λiαivi , i.e.,

The linear transformation corresponding to writing an x in the basis V
allows us to transform A to a diagonal matrix.

Theorem
Let A ∈ Rn×n with a complete set of eigenvectors v1, . . . ,vn ∈ Rn associated
with eigenvalues λ1,. . . ,λn. Let V be the matrix with columns vi . Then,
A = VΛV−1, where Λ is a diagonal matrix with Λii = λi ( Λij = 0 for i ̸= j ).
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The proof

v1, . . . ,vn is a basis, hence V is invertible and it remains to prove

V−1AV = Λ.

For 1 ≤ j ≤ n, the j-th column of the matrix V−1AV is given by(
V−1AV

)
·j
:=
(

V−1AV
)

ej = V−1Avj = V−1
λjvj = λjV−1vj = λjej ,

since V−1vj = V−1Vej = ej . Note that λjej is the j-th column of Λ. Hence, we
have that

V−1AV = Λ.

Definition (Diagonalizable Matrix)
A matrix A ∈ Rn×n is called diagonalizable if there exists an invertible matrix V
and a diagonal matrix Λ such that

V−1AV = Λ.
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Why do we want diagonizable matrices?

It allows us to perform a change of basis
using eigenvectors so that the matrix A becomes diagonalizable.

The idea more general
Let u1, . . . ,un be a basis for Rn and v1, . . . ,vm a basis of Rm. Consider the
transformation L that maps x = ∑

n
j=1 αjuj to L(x) = Ax = ∑

n
j=1 βivi .

We want to compute the matrix B that takes

α =

 α1
...

αn

 to

 β1
...

βm

 , i.e.,Bα = β .

Let U ∈ Rn×n and V ∈ Rm×m have columns u1, . . . ,un and v1, . . . ,vm.
Then, x = Uα and L(x) = V β and so β = V−1AUα and hence,

B = V−1AU.
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In summary,

L : Rn → Rm, L(x) = Ax .

L

(
n

∑
j=1

xjej

)
=

n

∑
i=1

(Ax)iei x =

 x1
...

xn

 (1)

L

(
n

∑
j=1

αjuj

)
=

n

∑
i=1

(Bα)ivi α =

 α1
...

αn

 ,
B = V−1AU ∈ Rm×n

U =
[

u1 · · · un
]
∈ Rn×n, V =

[
v1 · · · vm

]
∈ Rm×m

Specifically if A is square and diagonalizable
U = V can be chosen and B becomes a diagonal matrix!
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Similiar matrices

Definition (Similar Matrices)
We say that A ∈ Rn×n and B ∈ Rn×n are similar matrices if there exists an
invertible matrix S such that B = S−1AS.

Proposition
Similar matrices have the same eigenvalues.

Proof.
A and B are similiar, i.e., B = S−1AS. Let λ be an eigenvalue of A with
associated eigenvector v . Then Av = λv . Define w = S−1v . We obtain

Bw = S−1ASw = S−1ASS−1v = S−1Av = λS−1v = λw .

Conversely, let λ be an eigenvalue of B with associated eigenvector w . Then
Bw = λw . Define v = Sw . We obtain

Av = SBS−1v = SBS−1Sw = SBw = λSw = λv .
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Our next target: Symmetric matrices

Target
Here we consider symmetric matrices A ∈ Rn×n, AT = A. Our target is to show
that such a matrix always has a complete set of eigenvectors.

Proposition
Let A ∈ Rn×n be a symmetric matrix and λ an eigenvalue of A, then λ ∈ R.

Proof
Let v ∈ Cn be an eigenvector associated with the eigenvalue λ ∈ C. We have
Av = λv . Recall that, for a matrix (or vector) M, its Hermitian conjugate is
given by M∗ = M

⊤
. Since A is real symmetric we have A∗ = A. Thus

λ∥v∥2 = λv∗v = (λv)∗v = (Av)∗v = v∗A∗v = v∗Av = v∗
λv = λ∥v∥2.

Since v ̸= 0, then ∥v∥ ̸= 0 and so λ = λ . This implies that λ ∈ R.
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A second preparatory step

Proposition
Let A ∈ Rn×n be symmetric and λ1 ̸= λ2 two distinct eigenvalues of A with
corresponding eigenvectors v1, v2. Then v1 and v2 are orthogonal.

Proof.
v1,v2 ̸= 0 and hence,

λ1v⊤
1 v2 = (Av1)

⊤ v2 = v⊤
1 A⊤v2 = v⊤

1 Av2 = v⊤
1 (Av2) = λ2v⊤

1 v2,

since λ1 ̸= λ2 we must have that v⊤
1 v2 = 0.

Theorem (Spectral Theorem)
Every symmetric matrix A ∈ Rn×n has n real eigenvalues and an orthonormal
basis made of eigenvectors of A.
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First a few consequences of the spectral theorem

Corollary
For any symmetric matrix A ∈ Rn×n there exists an orthogonal matrix
V ∈ Rn×n (whose columns are eigenvectors of A) such that

A = VΛV⊤,

where Λ ∈ Rn×n is a diagonal matrix with the eigenvalues of A in its diagonal
(and V⊤V = I).

Let A be a real n×n symmetric matrix
Let v1, . . . ,vn be an orthonormal basis of eigenvectors of A and λ1, . . . ,λn the
associated eigenvalues. Then A = ∑

n
k=1 λiviv⊤

i

Corollary
The rank of a real symmetric matrix A is the number of non-zero eigenvalues
(counting repetitions).
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Proof of the spectral theorem I

The point of departure
Let A ∈ Rn×n be a symmetric matrix. We will prove the following by induction,
which for k = n implies the theorem we want to show:

For any k ∈ {1, . . . ,k} there are k orthogonal eigenvectors of A
corresponding to k real eigenvalues of A.
If k = 1, this statement is true.

The inductive step
Assume the statement is true for k , i.e., A has k (with 1 ≤ k < n) orthonormal
eigenvectors. Then we can build an extra one, orthogonal to the others.

v1, . . . ,vk denote k orthonormal eigenvectors of A and λ1, . . . ,λk the
respective eigenvalues.
Let uk+1, . . . ,un be an orthonormal basis of the orthogonal complement of
the span of v1, . . . ,vk .
Let Vk be the n×n matrix whose i-th column is vi if i ≤ k and ui if i > k .
Vk is an orthogonal matrix.
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Proof of the spectral theorem II: Define

B = V⊤AV =



— v⊤
1 —
...

— v⊤
k —

— u⊤
k+1 —
...

— u⊤
n —




| | | |

Av1 · · · Avk Auk+1 · · · Aun
| | | |



=



— v⊤
1 —
...

— v⊤
k —

— u⊤
k+1 —
...

— u⊤
n —




| | | |

λv1 · · · λvk Auk+1 · · · Aun
| | | |



=

[
Λk 0k×(n−k)

0(n−k)×k C

]
,

Λk is diagonal with entries λ1, . . . ,λk , C is a (n−k)× (n−k) symmetric matrix.
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Proof of the spectral theorem III

Since C is a (n−k)× (n−k) symmetric matrix, it has a real eigenvalue
λk+1 and a real eigenvector y ∈ Rn−k .
Let w ∈ Rn,

wi =

{
0 if i ≤ k

yi−k if i > k .

Bw =

[
Λk 0k×(n−k)

0(n−k)×k C

][
0k×1

y

]
=

[
0k×1
Cy

]
=

[
0k×1

λk+1y

]
= λk+1w .

Let vk+1 := Vw . V is orthogonal and A = VBV⊤. Thus,

Avk+1 = VBV⊤vk+1 = VBw = V λk+1w = λk+1vk+1,

so vk+1 is an eigenvector of A.
Show that vk+1 is orthogonal to v1, . . . ,vk !
The inner products v⊤

i vk+1 for i ≤ k appear in the first k entries of
V⊤vk+1 = w and w has its first k coordinates equal to 0.
By normalizing the vector we can have it attain unit norm.
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