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Week 8: Orthogonal vectors, orthogonal
complements of subspaces and projections



Orthogonality of vectors and subspaces

The target
Orthogonality is a key concept that allows us to decompose a space into two
subspaces, understand systems of linear equations, and allows us to define a
pseudoinverse.

Definition
Vectors v ,w ∈ Rn are orthogonal/ perpendicular (see Def. 1.15) if

vT w =
n

∑
i=1

viwi = 0.

Subspaces V and W are orthogonal if for all v ∈ V and w ∈ W , the vectors v
and w are orthogonal.

Lemma
Let v1, . . . ,vk and w1, . . . ,wl be bases of subspace V and W. V and W are
orthogonal if and only if vi and wj are orthogonal for all i and j.
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Preliminaries

Proof of the first lemma
Suppose V and W are orthogonal. Since vi ∈ V for all i and wj ∈ W for all
j , we have

vT
i wj = 0 for all i , j .

Conversely, assume that vT
i wj = 0 for all i and j .

Let v = ∑
k
i=1 λivi ∈ V and w = ∑

l
j=1 µjwj ∈ W .

vT w =
k

∑
i=1

λivT
i w =

k

∑
i=1

λivT
i

l

∑
j=1

µjwj =
k

∑
i=1

l

∑
j=1

µjλivT
i wj = 0.

Lemma
Let V and W be two orthogonal subspaces of Rn. Let v1, . . . ,vk be a basis of
subspace V . Let w1, . . . ,wl be a basis of subspace W. The set of vectors
{v1, . . . ,vk ,w1, . . . ,wl} are linearly independent.
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Further preliminaries

Proof of the second lemma
Consider the linear combination

(∗)
k

∑
i=1

λivi +
l

∑
j=1

µjwj = 0.

We want to show λi = 0 for all i and µj = 0 for all j .

Let v = ∑
k
i=1 λivi . (∗) is equivalent to v =−∑

l
j=1 µjwj . We obtain

vT v =−
l

∑
j=1

µjvT wj = 0.

Hence, v = 0. This implies λi = 0 for all i (v1, . . . ,vk is a basis of V ).
Accordingly, one shows that µj = 0 for all j by considering w = ∑

l
j=1 µjwj

and noticing that wT w = 0.
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The orthogonal complement of a subspace I

Corollary
Let V and W be orthogonal subspaces. Then V ∩W = {0}. Moreover,

dim(V +W ) = dim({v +w | v ∈ V , w ∈ W}) = dim(V )+dim(W )≤ n.

Definition
Let V be a subspace of Rn. We define the orthogonal complement of V as

V⊥ = {w ∈ Rn | wT v = 0 for all v ∈ V}.

V⊥ is a subspace of Rn!

Theorem
Let A ∈ Rm×n be a matrix. Then N(A) = C(AT )⊥ = R(A)⊥.
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Proof of the Theorem

Proof that N(A)⊆ C(AT )⊥.
Let x ∈ N(A). Take any b ∈ C(AT ) = R(A), i.e., b = AT y for some y ∈ Rm.
Then

bT x = yT Ax = yT 0 = 0.

Hence, x ∈ C(AT )⊥.

Proof that C(AT )⊥ ⊆ N(A).
Let x ∈ C(AT )⊥. By definition, bT x = 0 for all b ∈ C(AT ). Define y as the
following specific vector: y := Ax ∈ Rm.
Then b := AT y ∈ C(AT ) and hence, xT b = 0. We obtain

0 = xT b = xT AT y = xT AT Ax = ∥Ax∥2 ⇐⇒ x ∈ N(A).

Recall from Part 1:
If r = dim(R(A)) = dim(C(AT )), then n− r = dim(N(A).
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The orthogonal complement of a subspace II

Theorem
Let V ,W be orthogonal subspaces of Rn. The statements are equivalent.

(i) W = V⊥.
(ii) dim(V )+dim(W ) = n.
(iii) Every u ∈ Rn can be written as u = v +w with unique v ∈ V, w ∈ W.

Recall for the proof
Let v1, . . . ,vk be a basis of V and w1, . . . ,wl a basis of W . V and W are
orthogonal if and only if vT

i wj = 0 for all i ∈ {1, . . . ,k}, j ∈ {1, . . . , l}.

(i) implies (ii):
Define A ∈ Rk×n to be the matrix with row vectors v1, . . . ,vk . Then
V = R(A) = C(AT ). Moreover, W = V⊥ = N(A) from the previous theorem.
From the remark one slide before:

dim(V ) = k and hence, dim(W ) = n−k .
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Proof continued

(ii) implies (iii):
The vectors in the set {v1, . . . ,vk ,w1, . . . ,wl} are linearly independent.
Since by assumption l = n−k , this set is a basis of Rn. Hence,

for all u ∈ Rn, u =
k

∑
i=1

λivi +
l

∑
j=1

µjwj , where λ1,λk ,µ1, . . . ,µl ∈ R.

Define the unique vectors v := ∑
k
i=1 λivi , w := ∑

l
j=1 µjwj .

(iii) implies (i): We need to show that W = V⊥.
W ⊆ V⊥ since W is orthogonal to V .
For the reverse inclusion, let u ∈ V⊥ ⊆ Rn. From (iii) u = v +w where
v ∈ V and w ∈ W . Then

0 = uT v = vT v +vT w = vT v = ∥v∥2 ⇒ v = 0 ⇒ u = w ∈ W .
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Decomposition of Rn

Lemma
Let V be a subspace of Rn. Then V = (V⊥)⊥.

Proof. Let v1, . . . ,vk be a basis of V and w1, . . . ,wl a basis of V⊥.
l = n−k . Moreover, vT

i wj = 0 for all i and j and hence,

(V⊥)⊥ = {x ∈ Rn | xT wj = 0 for all j = 1, . . . ,n−k}.

Since vT
i wj = 0 for all j = 1, . . . ,n−k we obtain that V ⊆ (V⊥)⊥. From the

Theorem before, dim((V⊥)⊥) = n− (n−k) = k .
Since {v1, . . . ,vk} ⊆ V ⊆ (V⊥)⊥ are linearly independent, they are a basis
of (V⊥)⊥. Hence V = (V⊥)⊥.

Corollary
For a subspace V of Rn, Rn = V +V⊥ = {v +w | v ∈ V , w ∈ V⊥}.
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The set of all solutions to a system of linear equations

Corollary
For A ∈ Rm×n, N(A) = C(AT )⊥ and C(AT ) = N(A)⊥.

To refine our understanding,
Let A ∈ Rm×n. There are two important subspaces associated with A:

N(A) = {x ∈ Rn | Ax = 0}
R(A) = C(AT ) = {AT y | y ∈ Rm}= {x ∈ Rn | ∃y ∈ Rm such that x = AT y}.

N(A) is the orthogonal complement of R(A) and R(A) the orthogonal
complement of N(A). Hence

∀x ∈Rn there exist x0 ∈N(A) and x1 ∈R(A) such that x = x0+x1 and xT
1 x0 =0.

Theorem

{x ∈ Rn | Ax = b}= x1 +N(A) where x1 ∈ R(A) such that Ax1 = b.
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A link between the nullspaces of A and AT A

Lemma
Let A ∈ Rm×n. Then N(A) = N(AT A) and C(AT ) = C(AT A).

Proof.
If x ∈ N(A) then Ax = 0 and so A⊤Ax = 0, thus x ∈ N(A⊤A).
If x ∈ N(A⊤A) then A⊤Ax = 0. This implies that

x⊤A⊤Ax = x⊤0 = 0.

This gives

0 = x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥2,

so Ax = 0 and so x ∈ N(A).
For the second statement we notice

C(AT ) = N(A)⊥ = N(AT A)⊥ = C((AT A)T ) = C(AT A).
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Projections

Definition (Projection of a vector onto a subspace)
The projection of a vector b ∈ Rm on a subspace S (of Rm) is the point in S
that is closest to b. In other words

projS(b) = argmin
p∈S

∥b−p∥. (1)

Sanity check
This is only a proper definition if the minimum exists and is unique.

The one-dimensional case
Let S be the subspace corresponding to the line that goes through the vector
a ∈ Rm \{0}, i.e. S = {λa | λ ∈ R}= C(a). By drawing a two dimensional
example one can see that the projection p is the vector in the subspace S
such that the “error vector” e = b−p is perpendicular to a (i.e. b−p ⊥ a).
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The one dimensional case

Lemma
Let a ∈ Rm \{0}. The projection of b ∈ Rm on S = {λa | λ ∈ R}= C(a) is

projS(b) =
aaT

aT a
b.

Proof. Let p ∈ S, p = λa for λ ∈ R.

∥b−p∥2 =(b−p)T (b−p)=bT b−2bT p+pT p = ∥b∥2−2λbT a+λ
2∥a∥2 =g(λ ).

g is a convex, quadratic function in one variable λ .
The minimizer is obtained at the point λ ∗ where the derivative vanishes.

g′(λ ) =−2bT a+2λ∥a∥2 = 0 ⇐⇒ λ
∗ =

bT a
aT a

.

Hence, projS(b) = λ
∗a = a

bT a
aT a

= a
aT b
aT a

=
aaT

aT a
b.
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About our initial intuition

Our guess was that
the projection p should be the vector in the subspace S such that the “error
vector” e = b−p is perpendicular to a, i.e.,

(b−projS(b))⊥ a.

By substituting what we just computed we get

aT (b−projS(b)) = aT (b− aaT

aT a
b) = aT b−aT (

aaT

aT a
b) =

aT b− 1
aT aaT aaT b = aT b−aT b = 0.

A final check
The projection of a vector that is already a multiple of a should be the vector
itself. This is indeed true!
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The general case

The idea is similiar to the one-dimensional case
Let S be a subspace in Rm generated by a1, . . . ,an ∈ S, i.e.,

S = span(a1, . . . ,an) = C(A) = {Ax | x ∈ Rn}

where

A =

 | | |
a1 a2 · · · an
| | |

 .

Lemma
The projection of a vector b ∈ Rm to the subspace S = C(A) can be written as

projS(b) = Ax̂ , where x̂ satisfies the normal equations AT Ax̂ = AT b.

Recall for m = 1

projS(b) = λ
∗a =

aaT

aT a
b ⇐⇒ aT aλ

∗a = aT ba ⇐⇒ aT aλ
∗ = aT b.
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Proof.

b ∈ Rm. Hence b = p+e where p ∈ S and e ∈ S⊥, i.e., pT e = 0.
Consider another point p′ ∈ S. Then p−p′ ∈ S and hence, eT (p−p′) = 0.
This gives

∥p′−b∥2 = ∥p′−p+p−b∥2 = ∥p′−p−e∥2

= ∥p′−p∥2 +∥e∥2 ≥ ∥e∥2 = ∥p−b∥2.

We have shown that
projS(b) = p = Ax̂ ∈ S

where b = p+e with e ∈ S⊥.
Since S = C(A),

(b−projS(b))⊥ ai for all i = 1, . . . ,n ⇐⇒ aT
i (b−projS(b)) = 0 for all i .

This is equivalent to saying that

AT (b−projS(b)) = 0 ⇐⇒ AT (b−Ax̂) = 0 ⇐⇒ AT Ax̂ = AT b.
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