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Preparations for the Gram-Schmidt Process

Construct an orthonormal basis of a given subspace S C R. The subspace
is presented by a basis, i.e., vectors ay,...,an such that S = Span(ay,...,an).

The idea for two vectors

Let aq, a> be linearly independent and S = {a1xy + axxo | X1, X2 € R}: we first
normalize a{: g1 = ”Zﬁ then subtract from a, a multiple of g; so that it
becomes orthogonal to gy, followed by a normalization step:

a,—(a)
o = | 2 — (8, q1)a1 Note: a» — (a5 q1)g1 # 0.

|a2—(a§m)m H

Claim: gy, g are orthogonal.

a—(ag)q  qla—(a391)a ¢ 0 .

laa—(@a)a|  [a-(@ama] [a-@e)s]

9 p=q
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The Gram-Schmidt Process

remove from a vector a1 the projection of it on the subspace spanned by
the k vectors before.

Gram-Schmidt Algorithm

Given n linearly independent vectors aj, ..., a, that span a subspace S, the
Gram-Schmidt process constructs gy, ... g, in the following way:

_ a
® 3= a-
@ Fork=2,...,ndo
o g, =a—x(alana
_ G
® % =g

Theorem (Correctness of Gram-Schmidt)

Given n linearly independent vectors ay,...,an, the Gram-Schmidt process
outputs an orthonormal basis for the span of ay, ..., an.
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Proof by induction

Let Sk be the subspace spanned by ay,...,ax. Then S=S,.

Claim: gy,...,gx are an orthonormal basis for Sy

It is enough to show that g,...,qx € Sk and are orthonormal. ( orthonormality
implies linearly independence and Sy has dimension k)

@ Base case: ||g1]| =1 and g; is a multiple of a; and so g; € S;.

@ Assume the hypothesis fori=1,...k—1:

@ Since ay is linearly independent from the other original vectors it is not in
Sk—1 and so gj # 0. Thus ||qk|| = 1.

@ By construction ax € Sk and so gy € Sk.

o Let1<j<k-—1.Since qy,...,qx_1 are orthonormal, we have

k—1 k—1
q’ (ak -y (an;)qi> =q'ak— Y (a a)q/ 9 = qf a—(ax q)) =0,
i=1 i=1

T _ 1 T —
and q; %—mqj g, =0.
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A first application of the Gram-Schmidt Process

Gram-Schmidt actually provides us with a new matrix factorization. J

Definition (QR decomposition)

Let A be an m x n matrix with linearly independent columns. The QR
decomposition is given by
A=QR,

where Q is an m x n matrix with orthonormal columns returned by the Gram
Schmidt Algorithm and R is an upper triangular matrix given by R = QT A.

It requires us to show that indeed this is a proper definition. J

The matrix R defined before is upper triangular. Moreover, R is invertible and
QQTA=A.
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Proof of the lemma
R is upper triangular

@ We have that QTQ =/ and hence, g/ g;=0foralli=1,.
® qi,...,9x_1 and ay,...,ax_1 Span subspace Sx_;. Hence,

glaj=0foralli=1,....k—1.

@ Hence R= Q' Ais upper triangular.

Moreover, C(Q) = C(A)

@ Since QT Q = / we obtain for the projection matrix onto the subspace
C(Q) = C(A) the formula Q(Q"Q)~'Q" = QQT and notice, for every
index i,

projs, (&) =a=QQ"a <= QR=QQTA=A

@ N(A)={0} and since A= QR, we must have that N(R) = {0}. Since R is
a matrix of size n by n, we notice that R is invertible.
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The QR decomposition is computationally useful.

Recall C(A) = C(Q)

Projections on C(A) can be done with Q, i.e., projc(a)(b) = QQ'b.

The least squares solution min || Ax — b]|?:
is the point X solving the normal equations

ATARx=ATb.

@ Furthermore, ATA=(QR)"(QR)=R"Q" QR = R'R, and so we can
write
R"Rx=R"Q"b. (1)

@ Since Ris invertible, RT is invertible and so we can simplify (1) to

Rx =Q'b, (2)

which can be solved fast by back-substitution since R is triangular.
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The Pseudoinverse or Moore—Penrose Inverse

construct an analogue to the inverse of a matrix A for matrices that have no
inverse. This is called the pseudoinverse and we will denote it by A'.

The hurdles to overcome

@ For some vectors b there might not be a vector x such that Ax = b.

@ For some vectors b there may be more than one x such that Ax = b and
we must pick one.

@ Even if we make such choices, it is not clear that such operation will
correspond to multiplying by a matrix A'.

Our plan to take the hurdles
@ Develop a pseudoinverse for matrices with full column rank.
@ Develop a pseudoinverse for matrices with full row rank.

@ Write a general matrix as as product of two matrices: one of full column
rank and one of full row rank.
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Pseudoinverse for matrices with full column rank

If the columns of A are linearly independent it makes sense to build A" such
that A'b is the Least Squares Solution X = (AT A)~' AT b (the vector X such
that Ax is as close as possible to b).

Definition (Pseudoinverse for matrices with full column rank)

For A€ R™" with rank(A) = n we define the pseudo-inverse A" € R™™ of A
as

AT =(ATATTAT.

Proposition

| A\

@ For A R™*" with rank(A) = n, the pseudoinverse A' is a left inverse of
A, meaning that ATA = .

@ Proof. rank(A) = n, AT Aiis invertible. Hence, ATA= (ATA)TATA= 1.

Robert Weismantel November 20, 2024 9/15



Pseudoinverse for matrices with full row rank

If the rows of A are linearly independent, then A has full column rank and we
use the pseudo-inverse for A” to define a pseudo-inverse of A.

Definition (Pseudoinverse for matrices with full row rank)

For A € R™" with rank(A) = m we define the pseudo-inverse A" € R™ of A
as

AT =AT(AAT.

Proposition
@ For Ac R™" with rank(A) = m, the pseudoinverse A is a right inverse of
A, meaning that AA™ = /.
@ Proof. rank(A) = m, AA" is invertible. Hence, AA" = AAT(AAT)~ 1 =1.
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What do we achieve with the pseudo-inverse here?

Since A is full row rank, for all b € R, there exists x € R" such that Ax = b.
There are many such vectors. Choose one with smallest norm.

min x| (3)
s.t. Ax=b.

For a full row rank matrix A, the (unique) solution to (3) is given by the vector
X € C(A") that satisfies the constraint AX = b.

Claim: X = A"b is the solution to (3).
Proof follows from the lemma by noting that

Ax = AATb = AAT(AAT) b= b and hence, Ax = b.

x=Ab=AT ((AAT)—%) :
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Proof of the lemma

A solution to (8) is equivalent to

Let x4 be a vector such that Ax; = b. The set of solutions to Ax = b are
{x1 +y |y e N(A)}. Minimize ||x1 + y|| among all vectors y € N(A).

X1 — projn(a)(X1) is the solution to (3).

@ X1 = (X1 = projN(A) (X1 )) = projN(A)(X1 ) Since y € N(A) we have that

(X1 = Projn(a) (X1 )) 1 (y+ Projn(a)(X1 )) and so
o

X1 +y|I? = H <X1 — projn(a) (X1 )) + projn(ay(X1) +YHZ

= HX1 - PI’OJN(A)(X1)H2+ HPVOJN(A)(X1)+,VH2 > HX1 —PFOJN(A)(X1)H2-
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Pseudoinverse for matrices in general

Finally, x1 — projn(a)(x1) is orthogonal to N(A).

Since N(A)" = C(A"), we observe that x; — projya)(x1) € C(A").

The idea based on the CR decomposition:

The CR decomposition writes A= CR where C € R™*" has the first r linearly
independent columns of A and R € R™*" is upper triangular. Note that C is full
column rank and R is full row rank.

Definition (Pseudoinverse for all matrices)

For A€ R™" with rank(A) = r, with CR decomposition A= CR we define the
pseudoinverse A" as
AT=R'C,

AT =RT (RRT)_1 (cTc)_1 CT=RT (CT CRRT) T CT=RT (CTART) e
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What does a pseudoinverse for matrices give us?

For Ac R™" and b € R", the (unique) solution to (x) is given by X = ATb.

(x) min{||x||2 st xeR",ATAXZATb}

@ Let r be the rank of A and A= CR with C € R™" and R € R™*",
o Then = Afb=RT (CTART) ' CTb. Thus,

ATAx = ATAR'(CTAR")'Cb
RTCTART (CTAR") 'CTb=RTCTb=A"b.

@ Hence we have verified that X satisfies the normal equations.

@ C(ATA)=C(AT)=C(R") and since x = R" (CTAFi’T)f1 C'b, we have

verified that X € C(A' A). The result follows with the previous lemma.
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A few properties of the pseudo-inverse

Theorem (Let Ac R™*")

Q@ AATA=Aand ATAAT = AT.
Q@ AAT is symmetric. It is the projection matrix for projection on C(A),
©Q ATA is symmetric. It is the projection matrix for projection on C(A").

Q (AN =(a)".

Proof.
@ Letus plugin A" =RT (CTAI-?T)*1 C' to calculate AATA =
CRRT(CTCRRT)"'CT"CR=CRR"(RRT)-'(C"C)"'"C"CR=CR=A.
@ AA" is symmetric because

CRRT(RRT)'(cTc)'cT=c(cTe) 'cT = (C(CTC)—1 cT) " (aan)T

@ The columns of C are a basis of C(A). Hence, AAT = C(CTC)~'C' is the
projection matrix for projecting onto C(A).
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