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Part I

Python Foundations
1 Introduction to python

1.1 Why Python?

Python is a high-level programming language created by Guido van Rossum in 1991.
It was designed to be easy to read, simple to learn, yet powerful enough for real-world
applications. Today, Python is maintained by the Python Software Foundation and has
become one of the most widely used languages for science, engineering, and data analysis.

A central feature is that Python is an interpreted language. Unlike C or Java,
which require compilation into machine code before execution, Python code is executed
line by line by the Python interpreter.

What does this mean in practice?

• You can use Python interactively, typing commands and seeing results immediately.

• There is no compile–run cycle, making it ideal for rapid prototyping.

• The same script runs on any operating system where the interpreter is installed.

Example: Python (interpreted)

1 x = 5
2 print(x * 2)

Example: C (compiled)

1 // C program
2 #include <stdio.h>
3 int main() {
4 int x = 5;
5 printf("%d\n", x * 2);
6 return 0;
7 }

In C, the code must be compiled with a tool such as gcc before execution. In Python,
the code runs immediately in the interpreter.

Other key features of Python:

• Readable syntax close to natural language and mathematics,

• Dynamic typing: no need to declare variable types,

• Rich ecosystem of libraries (NumPy, SciPy, Matplotlib, Pandas, etc.),

• Open-source and free, with one of the largest programming communities.

Note. Python itself has a relatively small and clean core language, but its real strength
comes from the vast ecosystem of external packages developed for specific domains (nu-
merical computing, data analysis, machine learning, etc.). This design choice makes
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Python both highly versatile and very powerful, allowing it to adapt to many different
applications.

Conclusion: Python combines readability, interactivity, and powerful libraries, which
makes it a preferred choice for both beginners and experts in scientific computing.

1.2 Why Python in this course?

In Numerical Methods for Computer Science, Python is chosen as the main working envi-
ronment not because of its general popularity, but because it directly supports the type
of problems we will study in this course. Rather than focusing on programming itself,
our goal is to explore algorithms and numerical methods using a language that minimizes
technical overhead and maximizes clarity.

• Numerical libraries: NumPy and SciPy provide efficient, ready-to-use implemen-
tations of algorithms for linear algebra, integration, differential equations, and op-
timization.

• Data handling and visualization: With Pandas for structured data and Mat-
plotlib / Seaborn for high-quality plots, Python makes it straightforward to process
input data and illustrate numerical results.

• Interactive workflows: Through Jupyter Notebooks, we can seamlessly combine
explanations, code, and results in one document, which is ideal for both teaching
and reproducibility.

• Efficiency without complexity: While Python is simple to write and read, the
heavy computations are executed in optimized C and Fortran routines underneath,
giving us the best of both worlds.

• Transferable skills: Beyond this course, Python is a standard tool in academia
and industry, meaning that the techniques learned here are directly applicable in
research and professional practice.

Conclusion: Python lets us concentrate on understanding numerical algorithms and
their behavior, rather than on low-level programming details. This makes it the ideal
companion for studying numerical methods in computer science.
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2 Basics

2.1 First Steps

Python lets you write and run code without boilerplate (no class or main needed for simple
scripts).

Run Python three ways:

1. REPL / Interpreter (type and execute line-by-line)

$ python
>>> print("Hello , world!")
Hello , world!
>>> 2 + 3 * 4
14

2. Script (save as hello.py, then run)

1 # hello.py
2 print("Hello from a script!")
3 x = 21
4 print(x * 2)
5

$ python hello.py
Hello from a script!
42

3. Jupyter Notebook (interactive documents mixing code, text, and math)

$ pip install jupyter
$ jupyter notebook # open in browser

Java/C++ note: No compilation step is required before running simple Python code.

Important note: Throughout the semester we will regularly use CodeExpert, since this
platform will also be required during the exam. Even if the interface may appear less
flexible or elegant compared to other environments, it is extremely useful for training and
for ensuring that you are well prepared for the final evaluation.

When working outside CodeExpert, there are excellent alternatives to Jupyter:

• IPython (which is in fact the foundation of Jupyter) combined with a text editor
such as vi, emacs, or gedit ;

• Visual Studio Code, a modern and widely used IDE that integrates well with
Python.
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Comments and docstrings

1 # Single -line comment
2 """
3 Triple -quoted strings are often used as multi -line comments or

docstrings.
4 """
5 print("OK")

Printing and input
1 name = input("Your name: ") # returns a string
2 print("Hello ,", name)

Whitespace and indentation Indentation is syntax in Python (no braces). Use
consistent 4 spaces.

1 # Good:
2 if True:
3 print("Indented block")
4

5 # Bad (mixing tabs/spaces) SyntaxError

2.2 Variables and Assignment

In Python, variables are dynamically typed: you do not declare their type explicitly.
The interpreter determines the type of a value at runtime. This contrasts with Java/C++,
where a variable must be declared with a fixed type (int, double, etc.).

Basic assignment
Assignment uses the = operator. A variable is created when you first assign to it.

1 x = 10 # int
2 y = 3.14 # float (double precision)
3 flag = True # bool (note: capital T/F)
4 msg = "hello" # str (Unicode by default)
5

6 print(type(x), type(y), type(flag), type(msg))
7 # <class ’int ’> <class ’float ’> <class ’bool ’> <class ’str ’>

Note: In Python, integers can grow arbitrarily large (no overflow like in C++/Java).

Re-assignment and dynamic typing
A variable can be reassigned to a value of a different type without error:

1 x = 42 # int
2 x = "forty" # now a str
3 print(x)

This flexibility makes Python concise, but also means type errors only appear at
runtime.
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Multiple assignment and unpacking
Python supports assigning multiple variables at once, as well as unpacking tuples, lists,

and iterables:
1 a, b = 1, 2 # tuple unpacking
2 a, b = b, a # swap (no temp variable needed)
3 x, y, z = (10, 20, 30) # unpacking a tuple
4 x, *rest = [1, 2, 3, 4] # x=1, rest =[2,3,4]

This is particularly useful in numerical methods (e.g., updating iteration variables).

Chained assignment
A single value can be assigned to multiple variables:

1 x = y = z = 0
2 print(x, y, z) # 0 0 0

Augmented assignment
Shorthand operators both update and reassign:

1 count = 0
2 count += 1 # equivalent to count = count + 1
3 count *= 2 # now count is 2

Java/C++ note: same as +=, *=, etc. in those languages.

Identity vs. equality
Two different concepts:

• Equality (==) checks whether two objects have the same value.

• Identity (is) checks whether two variables point to the same object in memory.

1 a = [1, 2]; b = [1, 2]
2 print(a == b) # True (same contents)
3 print(a is b) # False (different objects)

Mutable vs. immutable types

• Immutable: int, float, bool, str, tuple

• Mutable: list, dict, set, custom objects

1 msg = "hi"
2 msg2 = msg
3 print(msg is msg2) # True (both point to same string)
4

5 lst1 = [1,2]; lst2 = lst1
6 lst2.append (3)
7 print(lst1) # [1,2,3] (both refer to the same list!)

Warning: assignment does not copy a mutable object; use copy() or copy.deepcopy()
if needed.
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Naming conventions (PEP 8)
Python follows standard style guidelines:

• variables/functions: snake_case (e.g., max_value)

• constants: UPPER_CASE (e.g., PI = 3.1415)

• classes: CamelCase (e.g., MySolver)

Good practices

• Choose descriptive names (n_steps, tolerance, etc.).

• Avoid shadowing built-ins: do not name variables list, dict, str, sum, etc.

• For numerical code, keep types consistent (e.g., floats vs. ints).

Micro-exercises

1. Swap two variables without using a temporary.

2. Write one line that assigns values 1, 2, 3 to x, y, z.

3. Show the difference between is and == using lists.

4. Demonstrate that strings are immutable by trying to change one character in a
string.

2.3 Basic Data Types

Python comes with a rich set of built-in data types. Unlike C++/Java, you do not need
to include headers or import libraries for these basics. Types are objects themselves, and
can be inspected at runtime with type().

Integers (arbitrary precision)
In Python, integers have arbitrary precision: they do not overflow at fixed 32/64-bit

limits. You can also use underscores for readability in numeric literals.

1 n = 2**100 # very large integer
2 m = 1_000_000 # underscores improve readability
3 print(n.bit_length (), m)
4 # Output: number of bits to represent n, and m = 1000000

Java/C++ note: unlike int or long, Python’s int grows automatically.
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Floats (IEEE 754 double precision)
Floats in Python are implemented as C doubles. Thus they follow IEEE 754 rules and

exhibit rounding errors.

1 x = 0.1 + 0.2
2 print(x) # 0.30000000000000004
3 # Compare with tolerance instead of "==" :
4 import math
5 print(math.isclose(x, 0.3, rel_tol =1e-9))

Tip: always use math.isclose() or numpy.isclose() when testing float equality.

Complex numbers (built-in)
Unlike Java or C++, Python has native complex numbers.

1 z = 1 + 2j # note: "j" is imaginary unit
2 print(z.real , z.imag , abs(z))
3 # Output: 1.0 2.0 2.236...

Useful in numerical methods: eigenvalues, FFTs, differential equations.

Booleans and truthiness
Python has a dedicated bool type, but also defines a general notion of truthiness :

empty containers, zero, and None evaluate to False; everything else is True.

1 bools = [False , True , bool (0), bool (1), bool(""), bool("x")]
2 print(bools) # [False , True , False , True , False , True]
3

4 print(bool ([]), bool ([0]), bool ({}), bool({"a":1}))
5 # False True False True

Java/C++ note: In C/C++, any nonzero integer is treated as true and 0 as false.
In Python, conditions are based on truthiness : 0, 0.0, 0j, None, empty strings, and empty
containers evaluate to False, while all other values (including 1) evaluate to True.

Strings (Unicode by default)
Strings are sequences of Unicode characters. They are immutable.

1 s1 = "double quotes"; s2 = ’single quotes ’
2 multi = """multi
3 line""" # triple quotes
4 name , age = "Alice", 20
5 msg = f"{name} is {age} years old" # f-string formatting

String operations:

1 print("abc" + "def") # concatenation
2 print("ha" * 3) # repetition: "hahaha"
3 print("Python"[0]) # indexing (0-based): ’P’
4 print("Python"[2:5]) # slicing: "tho"

Java/C++ note: strings are more powerful than std::string / String; no need for
char[] or manual Unicode handling.
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Operators and math
Python provides all the usual arithmetic operators.

1 # +, -, *, / (float), // (floor division), % (mod), ** (power)
2 print(7 / 2, 7 // 2, 7 % 2, 2 ** 10)
3 # 3.5 3 1 1024
4

5 import math
6 print(math.pi, math.e, math.sqrt (2))

Java/C++ note: be careful: / always yields float, even if both operands are ints.
Floor division // is not truncation but mathematical floor.

Type conversions
You can convert explicitly between types:

1 int (3.7) # 3
2 float (2) # 2.0
3 str (42) # "42"
4 complex(2, 3) # (2+3j)

Special constants

• None: absence of value (like null).

• float("inf"), float("-inf"), float("nan") for numerical infinity and NaN.

1 print(float("inf"), float("-inf"), float("nan"))
2 print(math.isnan(float("nan")))

2.4 Data Structures (Containers)

Python ships four core container types: list, tuple, dict, set. They all support iteration,
membership tests (in), and comprehensions.

Lists (mutable, ordered; like ArrayList)
Lists are dynamic arrays: they grow/shrink automatically, can contain mixed types,

and allow slicing.

1 nums = [10, 20, 30]
2 nums.append (40) # [10, 20, 30, 40]
3 nums.extend ([50, 60]) # concatenate
4 nums.insert(1, 99) # insert at position 1
5 print(nums[0], nums [-1]) # first , last element
6 print(nums [1:4]) # slice [1..3]
7 print(nums [:: -1]) # reversed copy

Modify/remove:
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1 nums [2] = 200 # update by index
2 val = nums.pop() # remove last , returns it
3 nums.remove (99) # remove first matching value
4 nums.clear() # empty list

Sorting:

1 data = [("alice", 3), ("bob", 1), ("carol", 2)]
2 print(sorted(data)) # sort by first element
3 print(sorted(data , key=lambda t: t[1], reverse=True))

Shallow copies and pitfalls:

1 a = [[0]] * 3 # same inner list repeated!
2 a[0][0] = 99
3 print(a) # [[99], [99], [99]]
4

5 b = [[0] for _ in range (3)] # distinct inner lists
6 b[0][0] = 99
7 print(b) # [[99], [0], [0]]

Java/C++ note: unlike fixed-size arrays, Python lists resize automatically.

Tuples (immutable, ordered)
Tuples are like fixed-size immutable lists. Useful for returning multiple values.

1 pt = (3, 4)
2 # pt[0] = 5 # TypeError: tuples are immutable
3 single = (1,) # note the trailing comma
4 x, y = pt # unpacking

Dictionaries (hash maps / key–value)
Python’s built-in mapping type.

1 scores = {"Alice": 10, "Bob": 9}
2 scores["Carol"] = 8
3 print(scores["Alice"]) # 10
4 print(list(scores.keys())) # keys
5 print(list(scores.values ())) # values
6 print(list(scores.items())) # (key , value) pairs
7

8 print("Bob" in scores) # membership checks keys
9 print(scores.get("Eve", 0)) # safe default

10

11 scores.update ({"Bob": 10, "Eve": 7}) # merge/update
12 squared = {i: i*i for i in range (5)} # dict comprehension

Note: Dicts preserve insertion order (since Python 3.7). Keys must be hashable (im-
mutable).

Java/C++ note: equivalent to HashMap<String,Integer>.
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Sets (unique elements, unordered)
Sets store unique elements with fast membership tests.

1 S = {1, 2, 2, 3} # {1, 2, 3}
2 S.add(4)
3 S.discard (2) # safe remove
4 A, B = {1,2,3}, {3,4}
5 print(A | B) # union {1,2,3,4}
6 print(A & B) # intersection {3}
7 print(A - B) # difference {1,2}
8 print(A ^ B) # symmetric diff {1,2,4}
9

10 evens = {i for i in range (10) if i % 2 == 0} # set comp

Iteration patterns
All containers are iterable.

1 # Over items:
2 for x in [10, 20, 30]:
3 print(x)
4

5 # With indices:
6 xs = ["a", "b", "c"]
7 for i, v in enumerate(xs):
8 print(i, v)
9

10 # Over dicts:
11 for key , val in scores.items():
12 print(key , "->", val)

Note: Iteration order is predictable (lists: insertion order; dicts: insertion order; sets:
arbitrary but consistent within a run).

2.5 Strings (in depth)

Strings are immutable sequences of Unicode characters. They support slicing, concatena-
tion, searching, and many built-in methods.

Indexing & slicing

1 s = "Numerical Methods"
2 print(s[0], s[-1]) # ’N’ ’s’
3 print(s[0:9]) # ’Numerical ’
4 print(s[::2]) # step 2
5 print(s[:: -1]) # reversed string

Common methods

1 t = " data ,science ,python "
2 print(t.strip()) # trim whitespace
3 print(t.upper(), t.lower())
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4 print(t.replace("python", "NumCS"))
5

6 parts = t.strip().split(",") # ["data","science","python "]
7 joined = "-".join(parts) # "data -science -python"
8

9 print("num" in "numerical") # True
10 print("abc".startswith("a"), "xyz".endswith("z"))

Formatting (f-strings recommended)

1 name , score = "Alice", 9.8765
2 print(f"{name} scored {score :.2f}") # Alice scored 9.88

Java/C++ note: F-strings resemble String.format in Java or printf in C.

Escapes and raw strings

1 print("line1\nline2\t(tab)")
2 print(r"C:\Users\you\folder") # raw string: no escapes

Bytes vs str (encoding)
Strings are Unicode; encode/decode converts to raw bytes.

1 text = " 3.14159"
2 b = text.encode("utf -8") # bytes
3 print(b) # b’\xcf\x80 \xe2\x89\x88 3.14159 ’
4 print(b.decode("utf -8")) # back to str

Immutability tip

1 s = "hello"
2 # s[0] = ’H’ # TypeError: strings are immutable
3 s = "H" + s[1:] # create a new string

2.6 Exercises

The following exercises consolidate your understanding of Python basics (variables, types,
data structures, strings). Try them in order.

Warm-up

1. Write a script that prints your name, age, and favorite course using f-strings.

2. Compute 21000 and print the number of digits in the result.

3. Ask the user for an integer n and print the sum 1 + 2 + · · · + n (use the formula,
not a loop).
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Numbers and math

1. Show that 0.1 + 0.2 == 0.3 is False, then fix the comparison with math.isclose.

2. Create a complex number 3 + 4i and print its magnitude (should be 5).

3. Convert 3.7 to an integer and 42 to a string. Print their types.

Variables and assignment

1. Swap two variables without using a temporary variable.

2. Demonstrate the difference between == and is using two identical lists.

3. Show that strings are immutable by trying to replace one character directly.

Containers

1. Create a list of the first 5 square numbers. Append the next square and print the
list.

2. Sort a list of names ["Eve","Alice","Bob"] alphabetically and then by length.

3. Create a tuple (x,y) and unpack it into two variables.

4. Create a dictionary mapping three students to their grades. Update one grade and
add a new student.

5. From a list of words, build a set of unique first letters.

Strings

1. Print the first 3 characters of your name and the last 2 characters.

2. Given the string " data,science,python ", strip whitespace, split on commas,
and join with dashes.

3. Check whether the substring "num" occurs in "Numerical" (case sensitive).

4. Use an f-string to format π ≈ 3.14159 with exactly 3 decimal places.

5. Encode the string " 3.14159" into UTF-8 bytes and then decode back.

Challenge

1. Write a script that asks the user for a sentence and then:

• prints the number of words,

• prints the unique words (case-insensitive),

• prints the sentence reversed (word order, not letters).

17



3 Control Flow
Programs need to make decisions and repeat actions. Python provides conditionals,
loops, comprehensions, and other constructs for directing the flow of execution. Unlike
Java/C++, blocks are controlled entirely by indentation.

3.1 Conditionals (if / elif / else)

1 x = 10
2 if x > 0:
3 print("positive")
4 elif x == 0:
5 print("zero")
6 else:
7 print("negative")

Notes:

• elif is Python’s else if.

• Indentation (4 spaces) replaces braces {}.

Truthiness in conditions Any value can be used in a condition. The following are
considered False:

• False, None

• zero numeric values: 0, 0.0, 0j

• empty containers: "", [], {}, set()

Everything else is treated as True.

1 if []:
2 print("non -empty list")
3 else:
4 print("empty list") # will be printed

Chained comparisons Python supports mathematical-style chaining:

1 x = 5
2 print(0 < x < 10) # True

Conditional expressions (ternary operator) Short form for if/else inside an ex-
pression:

1 n = 7
2 parity = "even" if n % 2 == 0 else "odd"
3 print(parity)
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Examples
1 name = input("Your name: ")
2 if name:
3 print("Hello ,", name)
4 else:
5 print("You did not type a name")
6

7 score = 87
8 grade = "Pass" if score >= 60 else "Fail"
9 print(grade)

3.2 Loops

Loops repeat actions while a condition holds (while) or over items in an iterable (for).
Blocks are defined by indentation (no braces).

While loops
1 # print first 5 natural numbers
2 i = 1
3 while i <= 5:
4 print(i)
5 i += 1

Java/C++ note: the semantics are identical; pay attention to indentation and to the fact
that + + and — - operators do not exist in Python

For loops (iterate over sequences and iterables)
1 # iterate over a list
2 for name in ["Alice", "Bob", "Carol"]:
3 print(name)
4

5 # iterate over a string (characters)
6 for ch in "NumPy":
7 print(ch)
8

9 # iterate over a numeric range (0..4)
10 for k in range (5):
11 print(k)
12

13 # range(start , stop , step) -- stop is exclusive
14 for k in range(2, 10, 2): # 2,4,6,8
15 print(k)

Java/C++ note: in Python, for iterates directly over elements (like a for-each); use
range() for indices.

Loop control: break, continue, pass
1 # find first multiple of 7 in 1..100
2 for n in range(1, 101):
3 if n % 7 == 0:
4 print("first multiple:", n)
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5 break # exit the loop early
6

7 # skip odd numbers
8 for n in range (10):
9 if n % 2 == 1:

10 continue # skip the rest of this iteration
11 print(n, "is even")
12

13 # placeholder for an empty block
14 def todo():
15 pass # syntactic no-op; fill later

Loop else (runs only if loop wasn’t broken)
1 # primality test (simple)
2 n = 29
3 for d in range(2, int(n**0.5) + 1):
4 if n % d == 0:
5 print("composite by", d)
6 break
7 else:
8 print("prime") # runs only if no break occurred

Tip: else on loops is useful when nothing was found, without needing extra flags.

Iterating with indices (enumerate)
1 xs = ["a", "b", "c"]
2 for i, val in enumerate(xs): # i from 0 by default
3 print(i, val)
4 # enumerate(xs , start =1) indexing from 1

Parallel iteration (zip)
1 names = ["Alice", "Bob", "Carol"]
2 scores = [10, 7, 9]
3 for name , score in zip(names , scores):
4 print(name , "->", score)

Safe iteration when mutating
1 # DON’T: mutating a list while iterating over it can skip items
2 xs = [1, 2, 3, 4]
3 for x in xs:
4 if x % 2 == 0:
5 xs.remove(x) # risky
6

7 # DO: iterate over a copy or build a new list
8 xs = [1, 2, 3, 4]
9 xs = [x for x in xs if x % 2 == 1] # list comprehension
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3.3 Iteration Utilities

Beyond basic for/while, Python provides built-in functions to make iteration more ex-
pressive and concise.

range() (integer sequences)
1 for i in range (5): # 0,1,2,3,4
2 print(i)
3

4 for i in range(2, 10, 2): # start , stop , step
5 print(i) # 2,4,6,8
6

7 print(list(range (3))) # [0,1,2]

Java/C++ note: range is like a generator of indices; stop is exclusive.

enumerate() (index + value)
1 names = ["Ada", "Alan", "Grace"]
2 for i, name in enumerate(names):
3 print(i, name)
4 # 0 Ada; 1 Alan; 2 Grace
5

6 for i, name in enumerate(names , start =1):
7 print(i, name) # index starts at 1

zip() (parallel iteration)
1 names = ["Ada", "Alan", "Grace"]
2 scores = [10, 7, 9]
3 for name , score in zip(names , scores):
4 print(name , "->", score)
5 # Ada -> 10; Alan -> 7; Grace -> 9
6

7 # zip stops at shortest sequence

reversed() and sorted()
1 nums = [3,1,4,1,5]
2 for n in reversed(nums):
3 print(n)
4

5 for n in sorted(nums):
6 print(n) # 1,1,3,4,5
7

8 for n in sorted(nums , reverse=True):
9 print(n) # 5,4,3,1,1

Iteration over dicts
1 scores = {"Ada": 10, "Alan": 7, "Grace": 9}
2 for k in scores: # keys by default
3 print(k)
4

5 for k, v in scores.items(): # key -value pairs
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6 print(k, v)
7

8 for v in scores.values (): # values only
9 print(v)

Iteration protocol (advanced note) Any object that implements __iter__() (re-
turns an iterator) can be used in for. Iterators implement __next__() and raise StopIteration
when exhausted.

3.4 Comprehensions

Python provides a compact way to build new sequences and containers from existing
iterables. Comprehensions are often more readable and efficient than writing explicit
loops.

List comprehensions
1 squares = [x*x for x in range (5)]
2 print(squares) # [0, 1, 4, 9, 16]
3

4 # with condition
5 evens = [x for x in range (10) if x % 2 == 0]
6 print(evens) # [0, 2, 4, 6, 8]
7

8 # nested comprehensions
9 matrix = [[i*j for j in range (3)] for i in range (3)]

10 print(matrix) # [[0,0,0],[0,1,2],[0,2,4]]

Dict comprehensions
1 # map numbers to their squares
2 squares = {x: x*x for x in range (5)}
3 print(squares) # {0:0, 1:1, 2:4, 3:9, 4:16}
4

5 # invert a dict
6 scores = {"Alice": 10, "Bob": 7}
7 inverse = {v: k for k, v in scores.items()}
8 print(inverse) # {10: "Alice", 7: "Bob"}

Set comprehensions
1 letters = {ch for ch in "abracadabra" if ch not in "ab"}
2 print(letters) # unique letters excluding a/b

Generator expressions Like list comprehensions, but use parentheses () instead of
brackets []. They produce a lazy iterator (values computed on demand).

1 gen = (x*x for x in range (5))
2 print(gen) # <generator object ...>
3 print(next(gen)) # 0
4 print(list(gen)) # [1,4,9,16] (rest of values)
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Performance note

• List/Dict/Set comprehensions build the entire container immediately.

• Generator expressions are memory-efficient for large or infinite sequences.

Readability tip Comprehensions are best for simple transformations and filters. If
logic becomes too complex (nested loops, multiple conditions), a regular loop may be
clearer.

3.5 Built-in Control Helpers

Python provides higher-order functions and built-ins that often replace explicit loops.
These make code shorter and closer to mathematical notation.

any() and all()
1 nums = [3, 5, 7, 8]
2

3 print(any(n % 2 == 0 for n in nums)) # True (at least one even)
4 print(all(n > 0 for n in nums)) # True (all positive)
5

6 # equivalent loop for all():
7 flag = True
8 for n in nums:
9 if not (n > 0):

10 flag = False
11 break
12 print(flag)

map() and filter() Apply a function to every element, or filter elements by condition.
They return iterators (convert to list to display).

1 nums = [1, 2, 3, 4, 5]
2

3 squares = list(map(lambda x: x*x, nums))
4 print(squares) # [1,4,9,16,25]
5

6 evens = list(filter(lambda x: x % 2 == 0, nums))
7 print(evens) # [2,4]

Pythonic alternative: list comprehensions.

1 squares = [x*x for x in nums]
2 evens = [x for x in nums if x % 2 == 0]

Aggregation functions
1 nums = [3, 1, 4, 1, 5]
2 print(sum(nums)) # 14
3 print(min(nums)) # 1
4 print(max(nums)) # 5
5 print(sorted(nums)) # [1,1,3,4,5]
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Itertools (for advanced iteration) The itertools module extends these patterns.

1 import itertools
2

3 for pair in itertools.combinations ([1,2,3], 2):
4 print(pair) # (1,2), (1,3), (2,3)

Note: Itertools is part of the standard library and extremely useful for combinatorics and
numerical methods.
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4 Defining Functions
Functions let you group code into reusable blocks with a name, parameters, and (option-
ally) a return value. In Python, functions are first-class objects: they can be passed
around, stored in variables, and even created at runtime. Defining functions is central to
writing clean and modular programs.

4.1 Defining simple functions

Functions are defined with the keyword def, followed by the name, parameter list in
parentheses, and a colon. The function body is indented. Use return to give back a
value; without it, the function returns None.

1 def greet():
2 print("Hello from a function!")
3

4 greet() # call the function

With parameters
1 def square(x):
2 return x * x
3

4 print(square (5)) # 25

Multiple parameters
1 def hypotenuse(a, b):
2 return (a*a + b*b) ** 0.5
3

4 print(hypotenuse (3, 4)) # 5.0

No explicit return If you omit return, the function returns None by default.

1 def say_hi(name):
2 print("Hi", name)
3

4 result = say_hi("Alice")
5 print(result) # prints Hi Alice , then None

Docstrings Triple-quoted strings at the start of a function serve as documentation.

1 def factorial(n):
2 """Compute n! (factorial) recursively."""
3 if n == 0:
4 return 1
5 return n * factorial(n-1)
6

7 help(factorial) # shows the docstring

Java/C++ note: Unlike Java, functions do not belong to classes by default (C++
style). You can define free-standing functions without wrapping them in a class.
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4.2 Arguments and Parameters

Function parameters in Python are flexible: you can call functions with positional argu-
ments, keyword arguments, or both. Defaults make parameters optional.

Positional arguments Arguments are matched to parameters in order.

1 def add(a, b):
2 return a + b
3

4 print(add(2, 3)) # 5

Keyword arguments Arguments can also be passed by name, making the call clearer.

1 def greet(name , greeting):
2 print(f"{greeting}, {name}!")
3

4 greet(name="Alice", greeting="Hello")
5 greet(greeting="Hi", name="Bob")

Default values Parameters can have default values, making them optional.

1 def greet(name , greeting="Hello"):
2 print(f"{greeting}, {name}!")
3

4 greet("Alice") # uses default
5 greet("Bob", greeting="Hi") # override default

Mixing positional and keyword
1 def power(base , exp=2):
2 return base ** exp
3

4 print(power (3)) # 9
5 print(power(3, 3)) # 27
6 print(power(base=2, exp=5)) # 32

Rules:

• Positional arguments must come before keyword arguments.

• Default parameters must come after non-default ones.

Keyword-only arguments (advanced) Using * enforces that certain arguments must
be specified by name:

1 def divide(a, b, *, precision =2):
2 return round(a / b, precision)
3

4 print(divide(5, 2)) # 2.5
5 print(divide(5, 2, precision =4)) # 2.5 (4 decimals)
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4.3 Variable-length Arguments

Sometimes the number of arguments is not known in advance. Python allows functions
to accept a variable number of positional or keyword arguments.

*args (extra positional arguments) Using *args collects additional positional ar-
guments into a tuple.

1 def total(*args):
2 print(args) # tuple of arguments
3 return sum(args)
4

5 print(total(1, 2, 3)) # 6
6 print(total(4, 5, 6, 7, 8)) # 30

**kwargs (extra keyword arguments) Using **kwargs collects additional keyword
arguments into a dictionary.

1 def describe (** kwargs):
2 for key , value in kwargs.items():
3 print(key , "->", value)
4

5 describe(name="Alice", age=20, course="NumCS")
6 # name -> Alice
7 # age -> 20
8 # course -> NumCS

Mixing fixed, *args, and **kwargs
1 def report(title , *items , **meta):
2 print("Title:", title)
3 print("Items:", items)
4 print("Meta:", meta)
5

6 report("Shopping List", "apples", "bananas",
7 date="2025 -01 -01", store="Market")

Argument unpacking The operators * and ** can also be used when calling functions,
to unpack sequences and dicts into arguments.

1 def add(a, b, c):
2 return a + b + c
3

4 values = [1, 2, 3]
5 print(add(* values)) # equivalent to add(1,2,3)
6

7 params = {"a": 10, "b": 20, "c": 30}
8 print(add(** params)) # equivalent to add(a=10, b=20, c=30)
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4.4 Scope and Lifetime

Each variable in Python has a scope (where it is visible) and a lifetime (how long it
exists). By default, names defined inside a function are local to that function.

Local vs global variables
1 x = 10 # global variable
2

3 def f():
4 x = 5 # local variable (shadows global)
5 print("inside:", x)
6

7 f()
8 print("outside:", x)
9 # inside: 5

10 # outside: 10

global keyword If you want to modify a global variable inside a function, declare it
with global.

1 count = 0
2

3 def increment ():
4 global count
5 count += 1
6

7 increment ()
8 print(count) # 1

nonlocal keyword Inside nested functions, nonlocal lets you modify variables from
the nearest enclosing (non-global) scope.

1 def outer():
2 x = 0
3 def inner():
4 nonlocal x
5 x += 1
6 return x
7 print(inner(), inner ())
8

9 outer() # 1 2

Lifetime

• Global variables live as long as the program runs.

• Local variables exist only while the function is executing.

Java/C++ note: In Python there are no block-scoped variables inside if or for (all
names declared in a function belong to that function’s scope).
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4.5 First-class Functions

In Python, functions are first-class objects. This means they can be:

• assigned to variables,

• passed as arguments,

• returned from other functions,

• stored in data structures.

Assigning to variables
1 def greet(name):
2 return f"Hello , {name}!"
3

4 say_hi = greet # assign function to new name
5 print(say_hi("Alice"))

Passing functions as arguments
1 def apply_twice(func , x):
2 return func(func(x))
3

4 def square(n): return n*n
5

6 print(apply_twice(square , 3)) # square(square (3)) = 81

Returning functions
1 def make_multiplier(k):
2 def multiply(x):
3 return k * x
4 return multiply
5

6 times3 = make_multiplier (3)
7 print(times3 (10)) # 30

Storing in collections
1 def inc(x): return x + 1
2 def dec(x): return x - 1
3

4 funcs = [inc , dec]
5 for f in funcs:
6 print(f(10)) # 11, then 9

Note: This ability enables functional programming patterns, callbacks, and higher-
order functions.

4.6 Lambdas (anonymous functions)

Python allows defining functions without a name using the keyword lambda. These are
often called anonymous functions or simply lambdas. They are useful for short,
throwaway functions, especially when passing functions as arguments.
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Basic syntax
1 # general form:
2 # lambda parameters: expression
3

4 f = lambda x: x * x
5 print(f(5)) # 25

Equivalent with:
1 def f(x):
2 return x * x

Multiple parameters
1 add = lambda a, b: a + b
2 print(add(3, 4)) # 7

Using with built-in functions Lambdas are commonly used with functions like sorted,
map, filter, reduce.

1 # sort by length of string
2 words = ["Python", "C", "Haskell", "Go"]
3 print(sorted(words , key=lambda w: len(w)))
4

5 # map and filter
6 nums = [1, 2, 3, 4, 5]
7 squares = list(map(lambda x: x*x, nums))
8 evens = list(filter(lambda x: x%2==0, nums))
9 print(squares , evens)

Conditional expressions inside lambda Because lambdas can only contain expres-
sions, conditional logic must use the ternary operator:

1 sign = lambda x: "positive" if x > 0 else ("zero" if x == 0 else "
negative")

2 print(sign(-3), sign (0), sign (5))

Scope and closures Lambdas capture variables from their enclosing scope (just like
inner functions).

1 def make_adder(k):
2 return lambda x: x + k
3

4 plus10 = make_adder (10)
5 print(plus10 (5)) # 15

Limitations

• Lambdas must be a single expression (cannot contain statements like for, while,
or return).

• They are less readable for complex logic. Use def for clarity.
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Style guide (PEP 8)

• Use lambda for short, local functions passed as arguments.

• Prefer def for anything non-trivial or reused.

Java/C++ note Similar to anonymous classes in Java (before Java 8) or to []()
{...} lambdas in C++11+. However, Python’s lambdas are much more limited: only
expressions, no statements.

4.7 Exercises

The following exercises will help you practice defining and using functions in Python.

1. Simple definitions

(a) Write a function square(x) that returns x2 and test it.

(b) Write a function greet(name) that prints "Hello, <name>".

2. Parameters and return values

(a) Write a function hypotenuse(a, b) that computes
√
a2 + b2.

(b) Implement a recursive function factorial(n).

3. Default and keyword arguments

(a) Define power(base, exp=2) with a default exponent.

(b) Define greet(name, greeting="Hello") and call it with and without the
second argument.

4. Variable-length arguments

(a) Write a function total(*args) that computes the sum of any number of ar-
guments.

(b) Write a function describe(**kwargs) that prints all keyword arguments in
the form key=value.

5. Scope

(a) Demonstrate the difference between local and global variables by reusing the
same name inside and outside a function.

(b) Write a function outer() with an inner function inner() that modifies a
variable using nonlocal.

6. First-class functions

(a) Write a function apply_twice(func, x) and test it with square.

(b) Write a function make_multiplier(k) that returns a new function multiplying
its argument by k.

7. Lambdas
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(a) Sort a list of tuples (name, score) by score using a lambda.

(b) Use map + lambda to compute the squares of the first 10 numbers.

(c) Use filter + lambda to keep only the even numbers from a list.
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5 Input and Output
Python provides simple ways to interact with the user and with files. The two main built-
ins are input() for reading from standard input and print() for writing to standard
output. For persistent data, Python supports file I/O using the open() function and
context managers.

5.1 User Input
Reading input

1 name = input("Your name: ") # always returns a string
2 print("Hello ,", name)

Type conversion Use int(), float(), etc. to convert.

1 n = int(input("Enter an integer: "))
2 x = float(input("Enter a float: "))
3 print(n, x)

Java/C++ note Unlike Scanner or cin, input() always returns a string; explicit
conversion is required.

5.2 Output with print()
Basic printing

1 print("Hello , world!")

Multiple arguments
1 a, b = 2, 3
2 print("a =", a, "b =", b)
3 # automatically inserts spaces

Separator and end
1 print(1, 2, 3, sep=", ") # 1, 2, 3
2 print("no newline", end="")
3 print(" <- same line")

Formatted output Prefer f-strings:

1 pi = 3.14159
2 print(f"pi {pi:.3f}") # pi 3.142

5.3 File I/O
Opening and reading a file

1 f = open("data.txt", "r")
2 contents = f.read() # read entire file as string
3 f.close()
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Reading line by line
1 with open("data.txt") as f: # auto -close with ’with’
2 for line in f:
3 print(line.strip())

Writing to a file
1 with open("output.txt", "w") as f:
2 f.write("First line\n")
3 f.write("Second line\n")

Append mode
1 with open("output.txt", "a") as f:
2 f.write("Appended line\n")

File modes

• "r" – read (default)

• "w" – write (overwrite)

• "a" – append

• "b" – binary mode (e.g., "rb", "wb")

Example: reading numbers from a file
1 nums = []
2 with open("numbers.txt") as f:
3 for line in f:
4 if line.strip():
5 nums.append(float(line))
6 print("Mean =", sum(nums)/len(nums))

5.4 Standard streams (advanced note)

Python also exposes:

• sys.stdin – standard input

• sys.stdout – standard output

• sys.stderr – error output

1 import sys
2 sys.stdout.write("Hello without newline")
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6 Modules and Imports
Python code can be organized into modules (single .py files) and packages (folders
containing __init__.py). This allows reusing code and using external libraries like numpy.

6.1 Importing modules
Basic import

1 import math
2

3 print(math.sqrt (16)) # 4.0
4 print(math.pi) # 3.14159...

Alias imports It is common to give modules a short alias.

1 import numpy as np
2 print(np.arange (5)) # [0 1 2 3 4]

Import selected names You can import only what you need from a module.

1 from math import sqrt , pi
2

3 print(sqrt (25)) # 5.0
4 print(pi) # 3.14159...

Import everything (not recommended)
1 from math import *
2 print(sin(pi/2)) # 1.0

Warning: This pollutes the namespace and can cause name conflicts.

6.2 Creating your own module

Any .py file can be imported as a module. Suppose you have mymath.py:

1 # mymath.py
2 def square(x):
3 return x * x
4

5 def cube(x):
6 return x * x * x

In another file:

1 import mymath
2

3 print(mymath.square (4)) # 16
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6.3 Packages (directories of modules)

A package is a folder with an __init__.py file. For example:

mypkg/
__init__.py
utils.py
geometry/

__init__.py
circle.py

You can then import:

1 from mypkg import utils
2 from mypkg.geometry import circle

6.4 The __name__ variable

Each module has a built-in variable __name__. When a file is run directly, __name__ ==
"__main__". This is useful for code that should only run when executed as a script, not
when imported.

1 # myscript.py
2 def main():
3 print("Hello from main")
4

5 if __name__ == "__main__":
6 main()

Tip: This pattern is common in Python programs and avoids executing test code when
the file is imported as a module.

Why this matters. When a file is run directly (e.g., python myscript.py), __name__
is set to "__main__", so the code under the “main guard” if __name__ == "__main__":
runs. When the same file is imported (e.g., import myscript), __name__ is set to the
module name (here "myscript"), so that block does not run. This lets a module behave
differently when executed as a script versus when imported as a library.

Listing 1: Direct run vs import behavior
1 # util.py
2 def add(a, b):
3 return a + b
4

5 if __name__ == "__main__": # runs only when: python util.py
6 print("Demo:", add(2, 3)) # -> Demo: 5

Listing 2: Using the module from another file
1 # app.py
2 import util
3 print(util.add(10, 20)) # -> 30 (no "Demo" printed)

Common pitfall: the string must be written exactly as "__main__" (no spaces).
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7 Object-Oriented Programming (OOP)
Python supports object-oriented programming, but with a simpler and more flexible syn-
tax than Java or C++. Classes bundle data (attributes) and behavior (methods) together.
Objects are instances of classes.

7.1 Introduction to classes and objects

Defining a class and creating objects A class is defined with the keyword class.
The special method __init__ is the constructor. Every instance method must take self
as its first parameter, referring to the current object.

1 class Point:
2 def __init__(self , x, y):
3 self.x = x # instance attribute
4 self.y = y
5

6 def move(self , dx, dy):
7 self.x += dx
8 self.y += dy
9

10 def display(self):
11 print(f"({self.x}, {self.y})")
12

13 # create instances
14 p1 = Point(2, 3)
15 p2 = Point(0, 0)
16

17 p1.display () # (2, 3)
18 p2.move(5, -1)
19 p2.display () # (5, -1)

Key points

• The constructor is always named __init__.

• The first parameter self refers to the current instance.

• Attributes are created by assigning to self.something.

• Methods are defined like normal functions but inside the class.

Java/C++ comparison

• No need to declare fields in advance; they are created dynamically when assigned.

• No new keyword: p1 = Point(2,3) constructs directly.

• No explicit access modifiers (public, private); by convention, names starting with
_ are considered internal.
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7.2 Instance vs Class Variables

In Python, attributes can belong either to each individual object (instance variables)
or to the class itself (class variables).

Instance variables Defined inside __init__ (or later) and unique to each object.
1 class Point:
2 def __init__(self , x, y):
3 self.x = x # instance variable
4 self.y = y
5

6 p1 = Point(1, 2)
7 p2 = Point(3, 4)
8

9 p1.x = 10
10 print(p1.x, p2.x) # 10 3 (different values)

Class variables Defined directly in the class body, shared by all instances.
1 class Counter:
2 count = 0 # class variable
3

4 def __init__(self):
5 Counter.count += 1
6

7 c1 = Counter ()
8 c2 = Counter ()
9 print(Counter.count) # 2

Important notes

• Use self.var for per-object state.

• Use class variables for data shared across all objects (e.g., counters, constants).

• Class variables can be accessed as ClassName.var or via any instance, but changing
them via an instance creates a new instance variable.

Example: pitfall
1 class Example:
2 shared = [] # class variable
3

4 e1 = Example ()
5 e2 = Example ()
6 e1.shared.append (1)
7 print(e2.shared) # [1] (same list for all instances !)

Lesson: for mutable defaults, use instance variables instead:
1 class Example:
2 def __init__(self):
3 self.data = [] # unique list per instance
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Java/C++ note

• Instance variables ≈ fields in C++/Java.

• Class variables ≈ static fields in Java/C++.

7.3 Methods

Python supports three kinds of methods in classes: instance methods, class methods,
and static methods. They differ in what the first argument represents.

Instance methods (default) The most common kind of method. They take self as
the first parameter, which refers to the current object.

1 class Circle:
2 def __init__(self , r):
3 self.r = r
4

5 def area(self): # instance method
6 return 3.14 * self.r**2
7

8 c = Circle (5)
9 print(c.area()) # 78.5

Class methods Declared with @classmethod decorator. They take cls (the class
itself) as the first parameter. Useful for alternative constructors or operations that apply
to the whole class.

1 class Person:
2 population = 0
3

4 def __init__(self , name):
5 self.name = name
6 Person.population += 1
7

8 @classmethod
9 def how_many(cls):

10 return cls.population
11

12 p1 = Person("Alice")
13 p2 = Person("Bob")
14 print(Person.how_many ()) # 2

Static methods Declared with @staticmethod decorator. They do not receive self
or cls. They are like normal functions, but placed inside a class for organization.

1 class Math:
2 @staticmethod
3 def add(a, b):
4 return a + b
5

39



6 print(Math.add(2, 3)) # 5

Summary

• Instance methods: operate on object data (self).

• Class methods: operate on class-level data (cls).

• Static methods: do not use self or cls, just grouped in the class.

Java/C++ note

• Instance methods ≈ regular methods.

• Class methods ≈ static methods with class access.

• Static methods ≈ static methods in Java/C++, but Python makes the distinction
explicit with decorators.

7.4 Special Methods (dunder methods)

Python classes can define special methods (also called dunder methods, from "double
underscore") to customize how objects behave with built-in operations. This allows user-
defined classes to act like built-in types.

String representations: __str__ and __repr__
1 class Vector:
2 def __init__(self , x, y):
3 self.x, self.y = x, y
4

5 def __str__(self):
6 return f"({self.x}, {self.y})" # user -friendly
7

8 def __repr__(self):
9 return f"Vector ({self.x}, {self.y})" # for debugging

10

11 v = Vector(1, 2)
12 print(v) # (1, 2) -> __str__
13 print([v]) # [Vector(1, 2)] -> __repr__

Operator overloading You can redefine how operators work on objects.

1 class Vector:
2 def __init__(self , x, y):
3 self.x, self.y = x, y
4

5 def __add__(self , other):
6 return Vector(self.x + other.x, self.y + other.y)
7

8 def __eq__(self , other):
9 return self.x == other.x and self.y == other.y
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10

11 v1 = Vector(1, 2)
12 v2 = Vector(3, 4)
13 print(v1 + v2) # (4, 6)
14 print(v1 == v2) # False

Container protocols Implement methods to behave like lists/dicts:

1 class MyList:
2 def __init__(self , data):
3 self.data = data
4

5 def __len__(self):
6 return len(self.data)
7

8 def __getitem__(self , idx):
9 return self.data[idx]

10

11 nums = MyList ([10 ,20 ,30])
12 print(len(nums)) # 3
13 print(nums [1]) # 20

Iteration protocol Make an object iterable by defining __iter__.

1 class Countdown:
2 def __init__(self , n):
3 self.n = n
4

5 def __iter__(self):
6 while self.n > 0:
7 yield self.n
8 self.n -= 1
9

10 for x in Countdown (3):
11 print(x) # 3 2 1

Common special methods

• __init__ – constructor

• __del__ – destructor (rarely used)

• __str__, __repr__ – string representations

• __len__, __getitem__, __setitem__ – container behavior

• __iter__, __next__ – iteration

• __add__, __sub__, __eq__, __lt__, etc. – operators
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Java/C++ note Java does not support user-defined operator overloading (aside from
+ for String concatenation).
C++ explicitly supports operator overloading with some constraints.
Python achieves similar flexibility via dunder methods (e.g., __add__, __eq__), making
custom classes feel “built-in”.

7.5 Encapsulation

Encapsulation is the principle of hiding internal details of a class and exposing only what
is necessary. In Python, access modifiers (public, private, protected) do not exist like
in Java/C++. Instead, Python relies on naming conventions and special features like
@property.

Naming conventions

• public_name – intended for external use.

• _internal_name – convention: "protected", intended for internal use only.

• __private_name – triggers name mangling, making it harder to access from out-
side.

1 class Example:
2 def __init__(self):
3 self.public = 1
4 self._protected = 2
5 self.__private = 3
6

7 obj = Example ()
8 print(obj.public) # 1
9 print(obj._protected) # 2 (convention: don’t use outside)

10 print(obj.__private) # AttributeError
11 print(obj._Example__private) # 3 (name mangling)

Getters and setters (Java/C++ style) In Java/C++ you often write explicit get-
ter/setter methods. In Python this is rarely done manually:

1 class Person:
2 def __init__(self , name):
3 self._name = name
4

5 def get_name(self):
6 return self._name
7

8 def set_name(self , value):
9 self._name = value

10

11 p = Person("Alice")
12 print(p.get_name ())
13 p.set_name("Bob")
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The Pythonic way: @property Python provides @property to expose methods as
if they were attributes, keeping syntax clean while allowing encapsulation.

1 class Person:
2 def __init__(self , name):
3 self._name = name
4

5 @property
6 def name(self): # getter
7 return self._name
8

9 @name.setter
10 def name(self , value): # setter
11 if not value:
12 raise ValueError("Name cannot be empty")
13 self._name = value
14

15 p = Person("Alice")
16 print(p.name) # calls getter
17 p.name = "Bob" # calls setter

Advantages of @property

• You can start with a simple attribute, later turn it into a property without changing
client code.

• Properties allow validation, computed values, or lazy evaluation.

Java/C++ note

• Java/C++ enforce access with keywords private, protected, public.

• Python trusts the programmer: conventions (_var) are not enforced by the language.

• Properties are closer to C# get/set syntax than to Java boilerplate.

7.6 Inheritance

Inheritance allows defining new classes based on existing ones. The child class (subclass)
inherits attributes and methods from the parent class (superclass), and can override or
extend them.

Basic inheritance
1 class Animal:
2 def speak(self):
3 print("Some sound")
4

5 class Dog(Animal): # Dog inherits from Animal
6 def speak(self): # override
7 print("Woof!")
8

9 class Cat(Animal):
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10 def speak(self):
11 print("Meow!")
12

13 a = Animal ()
14 d = Dog()
15 c = Cat()
16

17 a.speak() # Some sound
18 d.speak() # Woof!
19 c.speak() # Meow!

Constructor inheritance If the parent defines __init__, the child can call it using
super().

1 class Person:
2 def __init__(self , name):
3 self.name = name
4

5 class Student(Person):
6 def __init__(self , name , major):
7 super().__init__(name) # call parent constructor
8 self.major = major
9

10 s = Student("Alice", "CS")
11 print(s.name , s.major) # Alice CS

Overriding methods Subclasses can redefine methods. To extend rather than replace,
call super() inside the override.

1 class Logger:
2 def log(self , msg):
3 print("LOG:", msg)
4

5 class TimestampLogger(Logger):
6 def log(self , msg):
7 from datetime import datetime
8 now = datetime.now().strftime("%H:%M:%S")
9 super().log(f"[{now}] {msg}") # call parent log

10

11 t = TimestampLogger ()
12 t.log("Hello")
13 # LOG: [12:34:56] Hello

The isinstance and issubclass functions
1 print(isinstance(s, Student)) # True
2 print(isinstance(s, Person)) # True
3 print(issubclass(Student , Person)) # True
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Java/C++ note

• Like Java/C++, Python supports single inheritance directly.

• Unlike Java, multiple inheritance is allowed (see next section).

• No need for explicit virtual keyword: methods are always virtual and can be
overridden.

7.7 Exercises (OOP)

1. Basic class

(a) Define a class Point with attributes x, y and a method move(dx, dy).

(b) Create two points and move them.

2. Instance vs class variables

(a) Define a class Counter with a class variable count that tracks how many in-
stances have been created.

(b) Create several objects and print Counter.count.

3. Methods

(a) Write a class Circle with a constructor that takes a radius.

(b) Add an instance method area() and a static method pi() returning 3.14159.

(c) Test them both.

4. Special methods

(a) Implement a class Vector(x,y) with __str__ to print like (x, y).

(b) Overload the + operator (__add__) to add two vectors.

5. Encapsulation

(a) Write a class Person with a private attribute _name.

(b) Use @property and @name.setter to control access.

6. Inheritance

(a) Create a base class Shape with a method area() that raises NotImplementedError.

(b) Derive classes Circle and Rectangle that override area().

(c) Test them with a list of shapes and a loop.
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Part II

NumPy Essentials
8 Introduction to NumPy
NumPy (Numerical Python) is the core library for scientific and numerical computing in
Python. It provides the ndarray object, a powerful, memory-efficient multidimensional
array, together with optimized operations written in C. While Python lists are flexible
and general-purpose, they are too slow for large-scale numerical tasks. NumPy solves this
by offering a compact representation of data and vectorized computations.

8.1 Motivation

Why do we need NumPy in a course on Numerical Methods?

• Python lists are slow: They store references to objects, not raw numbers. Iter-
ating element by element in Python is inefficient for large datasets.

• NumPy arrays are fast: They are implemented as contiguous blocks of homoge-
neous data, allowing the use of optimized low-level routines.

• Vectorization: Instead of explicit loops, operations apply to entire arrays at once.

• Ecosystem: NumPy is the foundation for higher-level libraries such as SciPy, Pan-
das, TensorFlow, and PyTorch.

Figure 1: Python list vs. NumPy array: memory model (conceptual). Lists store ref-
erences to heterogeneous objects, while NumPy arrays store homogeneous values in a
contiguous memory block, enabling fast vectorized operations.
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8.2 The ndarray Object

The central feature of NumPy is the ndarray (N-dimensional array). It is similar to
arrays in C or matrices in MATLAB, but much more flexible.

Important attributes:

• ndim – number of dimensions (axes).

• shape – tuple with the size of each dimension.

• dtype – data type of elements (e.g., int32, float64).

1 import numpy as np
2

3 a = np.array ([[1, 2, 3], [4, 5, 6]])
4 print(a.ndim) # 2 (matrix has 2 dimensions)
5 print(a.shape) # (2, 3) => 2 rows , 3 columns
6 print(a.dtype) # int64 (on most systems)

Figure 2: A 2D NumPy array (matrix) with shape (2,3) and ndim = 2. Rows and
columns are indexed starting from 0.

8.3 Getting NumPy

If you are using CodeExpert, NumPy is already available. Otherwise, it can be installed
via pip:

1 pip install numpy

By convention, NumPy is always imported under the alias np:

1 import numpy as np

This alias is universal in the scientific Python community and should always be used.

8.4 First Example

Let us compare a Python list with a NumPy array:

47



1 lst = [1, 2, 3, 4]
2 print(lst * 2)
3 # Output: [1, 2, 3, 4, 1, 2, 3, 4] (list repetition)
4

5 arr = np.array([1, 2, 3, 4])
6 print(arr * 2)
7 # Output: [2 4 6 8] (element -wise multiplication)

Figure 3: Multiplying a Python list versus a NumPy array. The list repeats its elements,
while the array performs element-wise multiplication.

8.5 Why is NumPy Fast?

NumPy’s performance advantage comes from two main reasons:

1. Vectorization: Array operations are implemented in optimized C code. Instead of
looping in Python, the computation is executed at low level.

2. Memory locality: Elements are stored contiguously in memory, making access
patterns efficient for the CPU cache.

Illustration:
1 # Python loop (slow) - 0.04494023323059082 s
2 squares = [x*2 for x in range(1 _000_000 )]
3

4 # NumPy vectorized (fast) - 0.0020804405212402344 s
5 arr = np.arange (1 _000_000)
6 squares_np = arr*2

Figure 4: Execution time comparison between a Python loop and a NumPy vectorized
operation. Vectorization in NumPy executes operations in optimized C code, leading to
significant performance improvements.
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8.6 Summary

NumPy enables us to write code that is:

• Concise: few lines instead of long loops,

• Readable: closer to mathematical notation,

• Efficient: executed by optimized C/Fortran routines,

• Foundational: forms the basis of the entire scientific Python ecosystem.

This makes NumPy the natural choice for studying and implementing numerical meth-
ods in computer science.

49



9 Constructing Arrays
Creating arrays is the fundamental starting point in NumPy. There are multiple ways to
create arrays, depending on the use case: from existing Python objects, by using NumPy’s
built-in constructors, by generating numerical ranges, or by sampling random values.

9.1 From Python Sequences

The most direct way to build a NumPy array is from a Python list or tuple using the
function np.array.

1 import numpy as np
2

3 # From a list
4 a = np.array([1, 2, 3, 4])
5

6 # From a tuple
7 b = np.array((5, 6, 7, 8))
8

9 print(type(a)) # <class ’numpy.ndarray ’>
10 print(a) # [1 2 3 4]

Unlike Python lists, NumPy arrays:

• contain elements of the same data type,

• are stored in contiguous memory,

• support element-wise operations efficiently.

Figure 5: Creating a NumPy array from a Python list. A list stores references to objects
scattered in memory, while a NumPy array stores values in a contiguous block.

9.2 Predefined Arrays

NumPy provides several constructors for common arrays:

1 zeros = np.zeros ((2 ,3)) # 2x3 matrix of zeros
2 ones = np.ones ((3 ,3)) # 3x3 matrix of ones
3 full = np.full((2,2), 7) # 2x2 matrix filled with 7
4 empty = np.empty ((2 ,2)) # uninitialized values
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Notes:

• np.zeros(shape) creates an array filled with 0.

• np.ones(shape) creates an array filled with 1.

• np.full(shape, value) creates an array with a constant value.

• np.empty(shape) allocates memory without initialization (values will be arbitrary,
depending on memory state).

Figure 6: Examples of array constructors in NumPy. Functions like np.zeros, np.ones,
np.full, and np.empty provide quick ways to generate arrays of a given shape with
predefined values.

9.3 Identity and Diagonal Arrays

Special square matrices are often needed:

1 I = np.eye(3) # identity matrix
2 D = np.diag([1, 2, 3]) # diagonal matrix

These arrays are useful in linear algebra and appear frequently in numerical algorithms.

9.4 Numerical Ranges

For evenly spaced sequences, NumPy provides arange, linspace, and logspace.

1 a = np.arange(0, 10, 2) # [0 2 4 6 8]
2 b = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
3 c = np.logspace(0, 2, 5) # [ 1. 10. 100.]

• np.arange(start, stop, step) works like Python’s range but returns an array.

• np.linspace(start, stop, num) generates exactly num points between the bounds.
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• np.logspace(start, stop, num) generates values evenly spaced on a logarithmic
scale.

Figure 7: Comparison of np.arange and np.linspace between 0 and 1.
np.arange(0,1,0.1) generates values with a fixed step, while np.linspace(0,1,10)
generates exactly 10 equally spaced values.

9.5 Random Arrays

Random numbers are essential in simulations, Monte Carlo methods, and testing:

1 rand = np.random.rand (2,2) # uniform in [0,1)
2 randn = np.random.randn (2,2) # standard normal distribution
3 ints = np.random.randint (0,10,(2,3)) # random integers between 0 and 9

• np.random.rand draws from uniform distribution.

• np.random.randn draws from normal (Gaussian) distribution.

• np.random.randint(low, high, size) draws random integers.

A note on the normal distribution. The function np.random.randn draws values
from the standard normal distribution, also known as the Gaussian distribution. It is the
familiar “bell-shaped curve” that appears in many natural and social phenomena, centered
at 0 with most values close to the mean.

If you are not familiar with the normal distribution, I recommend watching the excel-
lent visual explanation by 3Blue1Brown: https://www.youtube.com/watch?v=zeJD6dqJ5lo
(not fully relevant for this course, but really important in practice)
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Figure 8: Histogram of 1000 samples generated with np.random.randn. The values follow
the standard normal distribution with mean 0 and standard deviation 1.

9.6 Summary

NumPy provides many ways to construct arrays:

• From existing Python lists or tuples,

• Using constructors like zeros, ones, full, or empty,

• Generating special matrices like identities or diagonals,

• With evenly spaced sequences (arange, linspace, logspace),

• By sampling random numbers.

This flexibility makes NumPy arrays the natural building blocks for implementing
numerical methods.
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10 Inspecting Arrays
After creating arrays, one of the first tasks is to inspect their structure. This means
checking how many dimensions they have, how large they are, what kind of data they
store, and how we can reshape them for further computations. In numerical methods,
being able to quickly understand the structure of an array is crucial for debugging and
designing efficient algorithms.

10.1 Basic Attributes of an Array

Every NumPy array has several important attributes that describe its structure:

• ndim – number of dimensions (also called axes). A scalar has ndim=0, a vector has
ndim=1, a matrix has ndim=2, and so on.

• shape – tuple giving the length along each dimension. For example, a 2× 3 matrix
has shape (2,3).

• size – total number of elements (product of all shape entries).

• dtype – data type of elements (integers, floats, booleans, etc.).

1 import numpy as np
2

3 a = np.array ([[1, 2, 3], [4, 5, 6]])
4

5 print(a.ndim) # 2 (matrix has two dimensions)
6 print(a.shape) # (2, 3) -> 2 rows , 3 columns
7 print(a.size) # 6 (total elements)
8 print(a.dtype) # int64 (on most systems)

Example: dimensions in practice.
1 scalar = np.array (42)
2 vector = np.array ([1,2,3])
3 matrix = np.array ([[1 ,2] ,[3 ,4] ,[5 ,6]])
4

5 print(scalar.ndim , scalar.shape) # 0, ()
6 print(vector.ndim , vector.shape) # 1, (3,)
7 print(matrix.ndim , matrix.shape) # 2, (3,2)

—

10.2 Understanding Data Types

A key difference between Python lists and NumPy arrays is that arrays are homogeneous
— all elements have the same type. This makes storage and computation much more
efficient.

1 a = np.array([1, 2, 3], dtype=np.int32)
2 b = np.array ([1.0, 2.0, 3.0]) # float64 by default
3
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4 print(a.dtype) # int32
5 print(b.dtype) # float64

The method astype() can be used to explicitly convert types:

1 c = b.astype(np.int32)
2 print(c) # [1 2 3]
3 print(c.dtype) # int32

Figure 9: Common NumPy dtype values, their description, and memory size.

10.3 Reshaping Arrays

NumPy allows us to reorganize the shape of arrays as long as the total number of elements
stays the same.

1 a = np.arange (6)
2 print(a) # [0 1 2 3 4 5]
3

4 b = a.reshape ((2 ,3))
5 print(b)
6 # [[0 1 2]
7 # [3 4 5]]
8

9 c = a.reshape ((3 ,2))
10 print(c)
11 # [[0 1]
12 # [2 3]
13 # [4 5]]
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If we are not sure about one of the dimensions, we can use -1 and NumPy will infer
it automatically:

1 d = a.reshape((-1, 2)) # 6 elements , grouped into 2 per row
2 print(d.shape) # (3,2)

Figure 10: Reshaping a vector of shape (6,) into two different matrices. The same data
can be reorganized into shape (2,3) or shape (3,2) without changing the underlying
elements.

10.4 Flattening Arrays

Sometimes, we want to reduce a multi-dimensional array into a one-dimensional vector.

• flatten() – returns a new copy of the array.

• ravel() – returns a view when possible (faster, linked to original data).

1 b = np.array ([[1 ,2 ,3] ,[4 ,5 ,6]])
2

3 flat1 = b.flatten ()
4 print(flat1) # [1 2 3 4 5 6]
5

6 flat2 = b.ravel ()
7 print(flat2) # [1 2 3 4 5 6]

If we modify the result of ravel, the original array is also modified (because they
share memory), but this is not the case for flatten.

1 r = b.ravel()
2 r[0] = 99
3 print(b)
4 # [[99 2 3]
5 # [ 4 5 6]]
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Figure 11: Flattening a 2D array into 1D. a.ravel() returns a view into the original
array (no copy, shared memory), while a.flatten() returns a completely new copy of
the data.
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11 Indexing and Slicing Arrays
Indexing and slicing are the tools we use to access, select, and modify specific parts of
arrays. They are essential in numerical methods, because real computations rarely use
entire arrays at once — instead, we focus on sub-arrays, rows, columns, or even individual
elements.

In NumPy, indexing is richer than in Python lists. We start with the basics and
gradually move to more advanced forms.

11.1 Basic Indexing in 1D Arrays

Like Python lists, NumPy arrays are zero-indexed.

1 import numpy as np
2

3 a = np.array ([10, 20, 30, 40])
4

5 print(a[0]) # 10 (first element)
6 print(a[2]) # 30 (third element)
7

8 a[1] = 99 # modify element at index 1
9 print(a) # [10 99 30 40]

Notes:

• Index 0 refers to the first element.

• Negative indices count from the end: a[-1] is the last element.

1 print(a[-1]) # 40 (last element)
2 print(a[-2]) # 30 (second to last)

Figure 12: Indexing in a 1D NumPy array. Positive indices (0,1,2,3) count from the start,
while negative indices (-4,-3,-2,-1) count from the end.

11.2 Indexing in 2D Arrays

For 2D arrays (matrices), we need two indices: one for rows and one for columns.

1 b = np.array ([[1,2,3],
2 [4,5,6],
3 [7,8,9]])
4

5 print(b[0,0]) # 1 (row 0, col 0)
6 print(b[1,2]) # 6 (row 1, col 2)
7 print(b[-1,-1]) # 9 (last row , last col)
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- First index = row - Second index = column
This is the same convention used in mathematics: bi,j refers to row i, column j.
—

11.3 Slicing in 1D Arrays

A slice extracts a portion of the array. The general form is:

a[start:stop:step]

- Includes start, excludes stop (half-open interval). - step defaults to 1. - Missing
values default to array boundaries.

1 a = np.arange (10) # [0 1 2 3 4 5 6 7 8 9]
2

3 print(a[2:7]) # [2 3 4 5 6]
4 print(a[:5]) # [0 1 2 3 4]
5 print(a[::2]) # [0 2 4 6 8]
6 print(a[:: -1]) # [9 8 7 6 5 4 3 2 1 0]

11.4 Slicing in 2D Arrays

In multiple dimensions, we provide slices per axis.

1 b = np.array ([[1,2,3],
2 [4,5,6],
3 [7,8,9]])
4

5 print(b[:2, 1:])
6 # [[2 3]
7 # [5 6]]

Explanation: - Rows: :2 → take rows 0 and 1 - Columns: 1: → take columns 1 and
onward

The result is a 2× 2 submatrix.

Figure 13: Slicing a 2D array. Using b[:2, 1:] selects the first two rows and the last
two columns, giving the submatrix [[2,3],[5,6]].
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11.5 Slicing with Steps

Slices can also include steps.

1 c = np.arange (16). reshape (4,4)
2 print(c)
3 # [[ 0 1 2 3]
4 # [ 4 5 6 7]
5 # [ 8 9 10 11]
6 # [12 13 14 15]]
7

8 print(c[::2, ::2])
9 # [[ 0 2]

10 # [ 8 10]]

Here, every second row and every second column is taken.

Figure 14: Slicing with steps in a 2D array. Using c[::2, ::2] selects every second row
and every second column, resulting in the submatrix [[0,2],[8,10]].

11.6 Advanced Indexing: Lists of Indices

NumPy allows selecting arbitrary elements by providing lists (or arrays) of indices.

1 a = np.array ([10 ,20 ,30 ,40 ,50])
2 idx = [0, 2, 4]
3 print(a[idx]) # [10 30 50]

We can also use this in multiple dimensions:

1 b = np.array ([[1 ,2] ,[3 ,4] ,[5 ,6]])
2 print(b[[0,2], [1 ,0]]) # [2 5]
3 # Explanation:
4 # take (row 0,col 1) and (row 2,col 0)
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11.7 Boolean Indexing

A very powerful feature: arrays can be indexed with boolean masks.

1 a = np.arange (10)
2 mask = (a % 2 == 0) # even numbers
3 print(mask)
4 # [ True False True False True False True False True False]
5 print(a[mask])
6 # [0 2 4 6 8]

This is essential in data analysis, because it allows conditions like “select all values
greater than 5”.

1 print(a[a > 5]) # [6 7 8 9]

11.8 Views vs Copies in Indexing and Slicing

Important: in NumPy, most slicing operations return a view, not a copy. This means
they share the same memory. Modifying the view modifies the original array.

1 a = np.arange (10)
2 b = a[2:5] # view
3 b[:] = 99
4 print(a)
5 # [0 1 99 99 99 5 6 7 8 9]

If we want an independent array, we must call copy():

1 c = a[2:5]. copy()
2 c[:] = -1
3 print(a) # original unchanged
4 print(c) # [-1 -1 -1]

Figure 15: Views vs Copies in NumPy slicing. A slice like a[2:5] produces a view that
shares memory with the original array. Using copy() creates a new independent block of
memory.
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12 Array Operations
NumPy arrays support fast, vectorized operations that apply to whole arrays at once. This
section introduces element-wise arithmetic, broadcasting (how shapes align), universal
functions (“ufuncs”), matrix multiplication, reductions (e.g. sums, means), comparisons
and logical operations, and practical tips for numerical stability.

12.1 Element-wise Arithmetic

Unless stated otherwise, arithmetic operators apply element by element.

1 import numpy as np
2

3 a = np.array([1, 2, 3, 4])
4 b = np.array ([10, 20, 30, 40])
5

6 print(a + b) # [11 22 33 44]
7 print(a - b) # [-9 -18 -27 -36]
8 print(a * b) # [10 40 90 160]
9 print(b / a) # [10. 10. 10. 10.]

10 print(a ** 2) # [ 1 4 9 16]

Figure 16: Element-wise addition in NumPy. Given a = [1, 2, 3, 4] and b = [10, 20, 30, 40],
the result of a+ b is [11, 22, 33, 44].

Type promotion. NumPy chooses a result dtype that can hold all inputs: adding
int32 and float64 promotes to float64. Use astype if you need a specific dtype.

1 x = np.array([1, 2, 3], dtype=np.int32)
2 y = np.array ([0.5, 1.5, 2.5]) # float64
3 z = x + y
4 print(z.dtype) # float64

12.2 Scalar Operations and Broadcasting (Preview)

Operations with scalars are broadcast to every element:

1 a = np.array([1, 2, 3, 4])
2

3 print(a + 5) # [6 7 8 9]
4 print(2 * a) # [2 4 6 8]
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Pitfall (Python lists). [1,2,3] * 2 repeats the list, but np.array([1,2,3]) * 2
multiplies element-wise.

12.3 Broadcasting: The Full Rules

Broadcasting lets NumPy perform element-wise operations on arrays of different shapes
without copying data. Shapes are compared from right to left ; two dimensions are compat-
ible if they are equal or one of them is 1. The result shape is the element-wise maximum.

Operands Compatible? Result shape
(3, 1) and (1, 4) yes (3, 4)
(5, 1, 7) and (1, 3, 1) yes (5, 3, 7)
(3, ) and (3, 1) no (compare from right: 1 vs ∅) –
(8, 1, 6, 1) and (7, 1, 5) yes (8, 7, 6, 5)

1 # Row vector (1, 4) + column vector (3, 1) -> (3, 4)
2 row = np.array ([[1, 2, 3, 4]]) # shape (1, 4)
3 col = np.array ([[10] , [20], [30]]) # shape (3, 1)
4 print((col + row).shape) # (3, 4)
5 print(col + row)

Making row/column vectors explicitly. Use np.newaxis (alias None) to add a
length-1 dimension:

1 v = np.array([1, 2, 3, 4]) # shape (4,)
2 row = v[np.newaxis , :] # (1,4)
3 col = v[:, np.newaxis] # (4,1)

Common error. ValueError: operands could not be broadcast together means
some pair of dimensions (right-aligned) are neither equal nor 1.

12.4 Universal Functions (ufuncs)

Ufuncs are fast vectorized functions in C that operate element-wise. They work on scalars
or arrays, broadcast automatically, and support extra features like the where mask and
out parameter.

1 x = np.linspace(0, np.pi, 5)
2 print(np.sin(x)) # element -wise sine
3 print(np.exp(x) - 1) # expm1 (see numerical tips below)
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Figure 17: The sine function on the interval [0, 2π]. NumPy universal functions (ufuncs)
such as np.sin apply element-wise to arrays, producing fast vectorized computations.

Binary ufuncs. Many ops have ufunc forms (e.g. np.add, np.multiply), and expose
reductions/accumulations:

1 a = np.array ([1,2,3,4])
2 print(np.add.reduce(a)) # 10 (same as a.sum())
3 print(np.add.accumulate(a)) # [1 3 6 10] (prefix sums)

where and out. Apply a ufunc conditionally and/or write directly into a preallocated
array:

1 x = np.linspace(-2, 2, 5)
2 y = np.empty_like(x)
3 np.square(x, out=y, where =(x >= 0)) # square only non -negatives; others left uninitialized
4 print(y)

12.5 Comparisons and Logical Operations

Relational operators are element-wise and return boolean arrays (masks):

1 a = np.array([0, 1, 2, 3, 4, 5])
2 mask = (a % 2 == 0) & (a >= 2) # use & and | with parentheses (not and/or)
3 print(mask) # [False False True False True False]
4 print(a[mask]) # [2 4]

Logical reductions condense masks to scalars or to lower-rank arrays:

1 M = np.array ([[True , False , True],
2 [True , True , False ]])
3 print(M.any()) # True
4 print(M.all(axis =0)) # [ True True False] (per column)
5 print(M.any(axis =1)) # [ True True] (per row)

64



Useful helpers. np.where(cond, a, b), np.clip(x, lo, hi), np.maximum, np.minimum
all broadcast and are vectorized.

12.6 Reductions and Aggregations

Reductions collapse one or more axes using functions like sum, mean, min, max, std, var,
median, etc.

1 A = np.array ([[1, 2, 3],
2 [4, 5, 6]])
3

4 print(A.sum()) # 21 (all elements)
5 print(A.sum(axis =0)) # [5 7 9] (column sums)
6 print(A.sum(axis =1)) # [6 15] (row sums)
7 print(A.mean(keepdims=True)) # [[3.5]] (preserve rank)

NaN-aware variants. Use np.nanmean, np.nansum, etc. to ignore NaNs.

1 x = np.array ([1.0, np.nan , 3.0])
2 print(np.nanmean(x)) # 2.0

Figure 18: Reductions across axes in NumPy. The operation a.sum(axis=1) computes
row sums (horizontal reduction, in red), while a.sum(axis=0) computes column sums
(vertical reduction, in blue).

12.7 Matrix Multiplication vs Element-wise Multiplication

The operator * is element-wise; the @ operator (and np.matmul/np.dot) performs matrix
multiplication (or vector dot product).

1 A = np.array ([[1, 2],
2 [3, 4]])
3 B = np.array ([[5, 6],
4 [7, 8]])
5

6 print(A * B) # element -wise: [[ 5 12]
7 # [21 32]]
8

9 print(A @ B) # matrix product: [[19 22]
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10 # [43 50]]
11

12 v = np.array([1, 2]) # shape (2,)
13 print(A @ v) # [5 11]

Row/column vectors explicitly. For 2D semantics, shape your vectors as (1, n) or
(n, 1) with np.newaxis.

Figure 19: Element-wise (Hadamard) product vs Matrix multiplication. In NumPy, A
* B multiplies elements position-wise, while A @ B or np.dot(A,B) performs the matrix
product.

12.8 Outer Products, Dot Products, and Norms

1 u = np.array([1, 2, 3])
2 v = np.array([4, 5])
3

4 print(np.outer(u, v))
5 # [[ 4 5]
6 # [ 8 10]
7 # [12 15]]
8

9 print(np.dot(u, u)) # 1*1 + 2*2 + 3*3 = 14 (scalar)
10 print(np.linalg.norm(u)) # sqrt (14)

12.9 Axis Semantics (Mental Model)

For a 2D array:

• axis=0 runs down the rows (operates across rows; one result per column).

• axis=1 runs across the columns (operates across columns; one result per row).

For higher dimensions, apply the same idea: the axis you specify is the one being reduced.

66



1 A = np.arange (24). reshape (2,3,4) # (depth=2, rows=3, cols =4)
2 print(A.sum(axis =0). shape) # (3,4) (sum over depth)
3 print(A.sum(axis =1). shape) # (2,4) (sum over rows)
4 print(A.sum(axis =2). shape) # (2,3) (sum over cols)

Figure 20: Axes in a 3D NumPy array of shape (2, 3, 4). By convention, axis=0 (red) cor-
responds to the depth dimension, axis=1 (blue) to rows, and axis=2 (green) to columns.

12.10 Numerical Stability and Practical Tips

Avoid Python loops. Prefer vectorized operations; they are faster and clearer.

Use where instead of branching in Python.
1 x = np.linspace(-5, 5, 11)
2 y = np.where(x >= 0, np.sqrt(x), 0.0) # vectorized "if"

Stable log/exp patterns. Use np.log1p(x) for log(1 + x) when x is small, and
np.expm1(x) for ex − 1. For sums of exponentials, subtract the maximum (“log-sum-
exp”):

1 a = np.array ([1000.0 , 1001.0 , 999.0])
2 m = a.max()
3 lse = m + np.log(np.sum(np.exp(a - m))) # stable log -sum -exp

Clipping and saturating.
1 sig = np.linspace(-5, 5, 11)
2 bounded = np.clip(sig , -1.0, 1.0) # now in [-1, 1]

67



Do not rely on np.vectorize for speed. It is a convenience wrapper (still loops in
Python), not a performance tool.

12.11 Worked Examples
Broadcasting a row into all rows of a matrix.

1 M = np.arange (12). reshape (3,4)
2 r = np.array ([10, 20, 30, 40]) # shape (4,)
3 print(M + r) # r broadcasts to (3,4)

Normalizing rows to unit ℓ2 norm.
1 X = np.array ([[3., 4.],
2 [1., 1.],
3 [0., 2.]])
4 row_norms = np.linalg.norm(X, axis=1, keepdims=True) # shape (3,1)
5 X_unit = X / row_norms

Mask-based replacement.
1 a = np.array([ -3., 0., 2., np.nan , 5.])
2 # Replace negatives and NaNs with 0
3 mask = (a < 0) | np.isnan(a)
4 a_fixed = a.copy()
5 a_fixed[mask] = 0.0

12.12 Exercises

1. Let a = np.array([1,2,3,4]) and b = np.array([4,3,2,1]). Compute 2a − b,
a⊙ b (element-wise), and a/b.

2. Given v = np.array([1,2,3,4]), create a row vector and a column vector (shapes
(1, 4) and (4, 1)), then form their outer product.

3. For A = np.arange(12).reshape(3,4), subtract the column means from each
column (hint: compute A.mean(axis=0) and broadcast).

4. Implement row-wise normalization for a random matrix X so that each row has
mean 0 and standard deviation 1 (use broadcasting).

5. Create a function that takes an array x and returns y = max(0, x) (ReLU) using
vectorized operations only (e.g. np.maximum).

6. (Numerical stability) Evaluate log(1+x) for x in {−10−8, . . . , 10−8} using np.log(1+x)
vs np.log1p(x) and compare errors to the Taylor approximation.
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13 Joining and Splitting Arrays
In many applications, we need to combine arrays into larger structures or split arrays into
smaller pieces. NumPy provides efficient functions for both operations.

13.1 Concatenation with np.concatenate

The simplest way to join arrays is with np.concatenate. It glues arrays along an existing
axis.

1 import numpy as np
2

3 a = np.array ([1,2,3])
4 b = np.array ([4,5,6])
5

6 c = np.concatenate ((a,b))
7 print(c) # [1 2 3 4 5 6]

For 2D arrays, the axis matters:

1 A = np.array ([[1,2],
2 [3 ,4]])
3 B = np.array ([[5 ,6]])
4

5 print(np.concatenate ((A,B), axis =0))
6 # [[1 2]
7 # [3 4]
8 # [5 6]]
9

10 print(np.concatenate ((A,B.T), axis =1))
11 # [[1 2 5]
12 # [3 4 6]]

Figure 21: Concatenation with different axes. Left: np.concatenate((A,B), axis=0)
stacks arrays along rows (vertical concatenation). Right: np.concatenate((A,B.T),
axis=1) stacks along columns (horizontal concatenation after transposing B).

13.2 Stacking Arrays

Unlike concatenate, stacking creates a new dimension.

69



1 a = np.array ([1,2,3])
2 b = np.array ([4,5,6])
3

4 print(np.stack((a,b)))
5 # [[1 2 3]
6 # [4 5 6]]
7

8 print(np.vstack ((a,b)))
9 # [[1 2 3]

10 # [4 5 6]]
11

12 print(np.hstack ((a,b)))
13 # [1 2 3 4 5 6]

Figure 22: Stacking arrays. Left: np.vstack((a,b)) stacks arrays vertically (row-wise).
Right: np.hstack((a,b)) stacks arrays horizontally (column-wise).

13.3 Splitting Arrays

Splitting is the inverse of concatenation. We can use np.split (equal parts) or np.array_split
(unequal parts allowed).

1 a = np.arange (9)
2

3 print(np.split(a, 3))
4 # [array ([0,1,2]), array ([3,4,5]), array ([6 ,7 ,8])]
5

6 print(np.array_split(a, 4))
7 # [array ([0,1,2]), array ([3,4]), array ([5,6]), array ([7 ,8])]
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Figure 23: Splitting 1D arrays. Top: np.split(arr, 3) splits an array of length 9 into
3 equal parts. Bottom: np.array_split(arr, 4) splits into 4 uneven parts, since 9 is
not divisible by 4.

For 2D arrays, we also have:

1 A = np.arange (16). reshape (4,4)
2

3 print(np.hsplit(A, 2)) # split into 2 column blocks
4 print(np.vsplit(A, 2)) # split into 2 row blocks

Figure 24: Splitting a 2D array into sub-arrays. Left: np.hsplit(A,2) divides into
two column blocks (vertical cut). Right: np.vsplit(A,2) divides into two row blocks
(horizontal cut).
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14 Searching in NumPy Arrays
NumPy provides efficient functions to search for elements or their positions in arrays.
These operations are vectorized and much faster than searching in plain Python lists.
The most important functions include np.where, np.argmax, np.argmin, np.nonzero,
np.in1d, and np.unique.

14.1 np.where

The np.where function returns the indices where a condition holds true. It can also be
used for conditional selection.

1 import numpy as np
2

3 arr = np.array ([10, 20, 30, 40, 50])
4 indices = np.where(arr > 25)
5

6 print(indices) # (array([2, 3, 4]),)
7 print(arr[indices ]) # [30 40 50]

14.2 np.argmax and np.argmin

np.argmax(arr) returns the index of the maximum element, while np.argmin(arr) re-
turns the index of the minimum element.

1 arr = np.array([3, 8, 1, 10, 5])
2

3 print(np.argmax(arr)) # 3 (value 10)
4 print(np.argmin(arr)) # 2 (value 1)

14.3 np.nonzero

The function np.nonzero returns the indices of non-zero elements:

1 arr = np.array([0, 2, 0, 5, 0, 7])
2 print(np.nonzero(arr)) # (array([1, 3, 5]),)

14.4 np.in1d

Checks whether elements of one array are present in another array:

1 a = np.array([1, 2, 3, 4, 5])
2 b = np.array([2, 4, 6])
3

4 print(np.in1d(a, b))
5 # [False True False True False]
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14.5 np.unique

Returns the unique values in an array and, optionally, their counts.

1 arr = np.array([1, 2, 2, 3, 3, 3, 4])
2

3 print(np.unique(arr))
4 # [1 2 3 4]
5

6 values , counts = np.unique(arr , return_counts=True)
7 print(values) # [1 2 3 4]
8 print(counts) # [1 2 3 1]
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15 Iterating over Arrays
Iteration means accessing array elements one by one. While NumPy is designed for
vectorized operations (where we avoid explicit loops), sometimes iteration is necessary or
useful for teaching and debugging. NumPy offers both simple Python-style iteration and
specialized tools like np.nditer.

15.1 Basic Iteration on 1D Arrays

Iterating over a 1D array works exactly like iterating over a Python list:

1 import numpy as np
2

3 a = np.array ([10, 20, 30, 40])
4

5 for x in a:
6 print(x)
7 # Output:
8 # 10
9 # 20

10 # 30
11 # 40

15.2 Iteration on 2D Arrays

When we loop over a 2D array, the iteration happens row by row:

1 b = np.array ([[1, 2, 3],
2 [4, 5, 6]])
3

4 for row in b:
5 print(row)
6 # Output:
7 # [1 2 3]
8 # [4 5 6]

1 # Nested loop to access individual elements
2 for row in b:
3 for elem in row:
4 print(elem , end=" ")
5 # Output: 1 2 3 4 5 6

15.3 Iterating with np.nditer

For more control and efficiency, we use np.nditer, which allows us to iterate over every
element regardless of dimension.

1 c = np.array ([[1, 2],
2 [3, 4],
3 [5, 6]])
4
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5 for x in np.nditer(c):
6 print(x)
7 # Output: 1 2 3 4 5 6

We can also control the memory order:

• order=’C’ → row-major (default, C-style).

• order=’F’ → column-major (Fortran-style).

1 print(list(np.nditer(c, order=’C’))) # [1 2 3 4 5 6]
2 print(list(np.nditer(c, order=’F’))) # [1 3 5 2 4 6]

Figure 25: Iteration order with np.nditer. Left: C-style (row-major) iteration goes row
by row. Right: Fortran-style (column-major) iteration goes column by column.

15.4 Enumerating Indices with np.ndenumerate

Sometimes we want both the index and the value. np.ndenumerate yields a tuple (index,
value):

1 for index , value in np.ndenumerate(c):
2 print(index , value)
3

4 # Output:
5 # (0, 0) 1
6 # (0, 1) 2
7 # (1, 0) 3
8 # (1, 1) 4
9 # (2, 0) 5

10 # (2, 1) 6
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16 Linear Algebra with NumPy
PS. This section only covers the minimum essentials of linear algebra in
NumPy. Much more will be presented in detail throughout the semester.
The purpose here is to provide just enough background so that the upcoming
lessons will be easier to follow.

Linear algebra is fundamental to data science, physics, and engineering. NumPy
provides efficient and reliable routines for common operations such as dot products, norms,
matrix multiplication, decompositions, and solving systems. All functions are in the
numpy.linalg submodule.

16.1 Vector and Matrix Operations

Dot product of vectors. For two vectors a, b ∈ Rn, the dot product is defined as:

a · b =
n∑

i=1

aibi

It measures how aligned two vectors are: if a and b are orthogonal, the dot product is 0.

1 import numpy as np
2

3 a = np.array([1, 2, 3])
4 b = np.array([4, 5, 6])
5

6 print(np.dot(a, b)) # 32
7 print(a @ b) # equivalent , 32

Matrix–vector product. Given a matrix A ∈ Rm×n and a vector x ∈ Rn, the product
y = Ax is a vector in Rm. This is a linear combination of the columns of A weighted by
components of x.

1 A = np.array ([[1, 2, 3],
2 [4, 5, 6]])
3 x = np.array([1, 0, -1])
4

5 y = A @ x
6 print(y) # [-2 -2]

Matrix–matrix multiplication. For A ∈ Rm×n and B ∈ Rn×p:

C = AB, Cij =
n∑

k=1

AikBkj

The result C is an m× p matrix.

1 A = np.array ([[1, 2],
2 [3, 4]])
3 B = np.array ([[5, 6],
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4 [7, 8]])
5

6 C = A @ B
7 print(C)
8 # [[19 22]
9 # [43 50]]

16.2 Norms and Distances

The most common norm is the ℓ2 (Euclidean) norm:

∥x∥2 =
√∑

i

x2
i

In NumPy:

1 x = np.array ([3.0, 4.0])
2 print(np.linalg.norm(x)) # 5.0

Other norms include: - ℓ1 norm: ∥x∥1 =
∑

i |xi| - ℓ∞ norm: ∥x∥∞ = maxi |xi|
1 print(np.linalg.norm(x, 1)) # 7.0
2 print(np.linalg.norm(x, np.inf)) # 4.0

Matrix norms:
- Frobenius norm ∥A∥F =

√∑
ij A

2
ij

- Spectral norm (largest singular value)

1 A = np.array ([[1, 2],
2 [3, 4]])
3 print(np.linalg.norm(A, ’fro’)) # Frobenius norm

16.3 Solving Linear Systems

A central problem: solving Ax = b for x.

1 A = np.array ([[3, 1],
2 [1, 2]])
3 b = np.array([9, 8])
4

5 x = np.linalg.solve(A, b)
6 print(x) # [2. 3.]

Always prefer np.linalg.solve over inverting A (np.linalg.inv) for numerical sta-
bility and performance.

77



Figure 26: Solving Ax = b as the intersection of two lines. The red line is 3x+ y = 9, the
blue line is x+ 2y = 8. Their intersection (x = 2, y = 3) is the solution of the system.

16.4 Matrix Decompositions

Decompositions break a matrix into simpler factors, crucial for understanding its proper-
ties and for numerical algorithms.

Eigenvalues and eigenvectors. For Av = λv, v is an eigenvector and λ its eigenvalue.

1 A = np.array ([[4, -2],
2 [1, 1]])
3

4 vals , vecs = np.linalg.eig(A)
5 print("Eigenvalues:", vals)
6 print("Eigenvectors :\n", vecs)

Figure 27: Eigenvectors preserve their direction under A. The unit circle (blue dashed)
is transformed by A into an ellipse (green). The eigenvectors (red, blue) remain aligned
with their original directions, scaled by their eigenvalues.

Singular Value Decomposition (SVD). Every matrix A ∈ Rm×n can be written as:

A = UΣV T
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where U and V are orthogonal, and Σ is diagonal with singular values.

1 U, s, Vt = np.linalg.svd(A)
2 print("U:", U)
3 print("Singular values:", s)
4 print("V^T:", Vt)

Figure 28: Geometric interpretation of the SVD. Left: V defines an orthogonal basis in
the input space. Middle: Σ scales along coordinate axes (singular values). Right: U
rotates into the output space.

QR decomposition. Factor A = QR with Q orthogonal, R upper triangular.

1 Q, R = np.linalg.qr(A)
2 print("Q:", Q)
3 print("R:", R)

Figure 29: Geometric view of QR decomposition. Left: Q rotates or reflects the basis.
Right: R applies an upper triangular shear and scaling.
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Part III

SciPy Basics for Numerical Methods
17 Introduction to SciPy
PS. This chapter is meant only as an introductory overview. We will discover most of
SciPy’s functionality gradually, at the moments when we need it during the semester.
Here the goal is simply to understand what SciPy is, how it relates to NumPy, and in
which directions it may be useful for us.

17.1 What is SciPy?

SciPy (“Scientific Python”) is a large collection of scientific computing routines built on
top of NumPy. While NumPy provides the data structure (array objects) and the basic
numerical operations, SciPy provides algorithms and higher-level functionality that are
needed for more complex numerical tasks.

• NumPy focuses on:

– array creation and manipulation,

– vectorized operations,

– basic linear algebra (numpy.linalg).

– Fourier transforms (general case)

• SciPy focuses on:

– advanced linear algebra routines (scipy.linalg),

– optimization and root finding (scipy.optimize),

– integration and solving ODEs (scipy.integrate),

– interpolation of data (scipy.interpolate),

– Fourier transforms - more advanced (scipy.fft),

– sparse matrix structures (scipy.sparse),

– and many more (signal processing, statistics, image analysis).

17.2 Why do we need SciPy?

In practice:

• We will continue to use NumPy arrays as the fundamental building block.

• Whenever we need a numerical method (a solver, an optimizer, an integrator, etc.),
we will call the corresponding SciPy submodule.

• This way, we avoid implementing standard algorithms from scratch and rely on
well-tested, efficient implementations.
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17.3 NumPy vs SciPy: A First Look

It is useful to remember:

• NumPy provides the core tools (array container, basic linear algebra).

• SciPy provides the specialized algorithms.

For example, solving a linear system Ax = b:

1 import numpy as np
2 from scipy import linalg as sla
3

4 A = np.array ([[3., 1.],
5 [1., 2.]])
6 b = np.array ([9., 8.])
7

8 # NumPy:
9 x_np = np.linalg.solve(A, b)

10

11 # SciPy:
12 x_sp = sla.solve(A, b)
13

14 print(x_np) # [2. 3.]
15 print(x_sp) # [2. 3.]

Both results are identical here, but SciPy also provides many extra routines (LU, QR,
SVD, Schur decomposition, etc.) that are not directly available in NumPy.

Figure 30: NumPy vs SciPy — quick comparison. Note: both provide FFT routines; for
simple cases numpy.fft is sufficient, but for efficiency and extended functionality it is
usually recommended to use scipy.fft.
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18 Linear Algebra with scipy.linalg

Linear algebra is at the core of numerical computing. Just like numpy.linalg, SciPy
provides scipy.linalg for linear algebra routines. The difference is that SciPy exposes
many more functions, often with better numerical stability, and with direct access to
LAPACK/BLAS routines.

NumPy vs SciPy. Both libraries allow you to solve common problems such as com-
puting determinants, inverses, or solving systems. However:

• numpy.linalg provides only the most common routines.

• scipy.linalg provides everything in numpy.linalg and much more (LU, QR,
Schur, Cholesky, SVD, Sylvester equations, etc.).

Determinant and inverse.
1 import numpy as np
2 from scipy import linalg
3

4 A = np.array ([[1, 2],
5 [3, 4]])
6

7 # determinant
8 print("det(A) =", linalg.det(A))
9

10 # inverse
11 print("A^{-1} =", linalg.inv(A))

Solving linear systems. Instead of computing the inverse (which is slow and unstable),
always use solve:

1 b = np.array([1, 2])
2

3 # NumPy
4 x_np = np.linalg.solve(A, b)
5

6 # SciPy
7 x_sp = linalg.solve(A, b)
8

9 print("NumPy:", x_np)
10 print("SciPy:", x_sp)

Both produce the same result here, but SciPy allows you to choose specialized solvers
for triangular systems, banded matrices, or sparse systems (via scipy.sparse.linalg).

LU decomposition. LU factorization splits A into PLU :

1 P, L, U = linalg.lu(A)
2 print("P =\n", P)
3 print("L =\n", L)
4 print("U =\n", U)
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QR decomposition. QR factorization writes A = QR with Q orthogonal and R upper
triangular.

1 Q, R = linalg.qr(A)
2 print("Q =\n", Q)
3 print("R =\n", R)

Cholesky decomposition. For symmetric positive definite matrices:

A = LLT

1 B = np.array ([[4, 2],
2 [2, 3]])
3 L = linalg.cholesky(B, lower=True)
4 print("L =\n", L)

Figure 31: Cholesky decomposition of a symmetric positive definite matrix. Here A =
LLT , with L lower triangular.

Singular Value Decomposition (SVD). Every A ∈ Rm×n can be written as:

A = UΣV T

1 U, s, Vh = linalg.svd(A)
2 print("Singular values:", s)

Eigenvalues and eigenvectors.
1 eigvals , eigvecs = linalg.eig(A)
2 print("Eigenvalues:", eigvals)
3 print("Eigenvectors :\n", eigvecs)

SciPy handles both real and complex matrices robustly.

Summary. Use numpy.linalg for basic problems in small scripts. Use scipy.linalg
when you need advanced decompositions, better numerical stability, or direct LAPACK
routines.
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19 Overview of SciPy Modules
Note: This is only a quick orientation. We will return to many of these modules during
the semester, when we need them in specific contexts. For now, the goal is to know what
tools exist and how they can be accessed.

19.1 Optimization (scipy.optimize)

Used to find roots of equations or minimize functions.

1 from scipy import optimize
2 import numpy as np
3

4 # Root of x^2 - 2 = 0
5 f = lambda x: x**2 - 2
6 root = optimize.root_scalar(f, bracket =[0, 2])
7 print(root.root) # approx sqrt (2)
8

9 # Minimize f(x) = x^2 + 5*sin(x)
10 res = optimize.minimize(lambda x: x**2 + 5*np.sin(x), x0=2.0)
11 print(res.x)

Figure 32: Examples from scipy.optimize. Left: root finding for f(x) = x2 − 2. Right:
minimization of f(x) = x2 + 5 sin(x).

19.2 Integration and ODEs (scipy.integrate)

Compute integrals and solve differential equations.

1 from scipy import integrate
2 import numpy as np
3

4 # Integral of exp(-x^2) from 0 to infinity
5 res , err = integrate.quad(lambda x: np.exp(-x**2), 0, np.inf)
6 print(res)
7
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8 # Solve dy/dt = -2y, with y(0)=1
9 sol = integrate.solve_ivp(lambda t, y: -2*y, [0, 5], [1])

10 print(sol.y)

Figure 33: Examples from scipy.integrate. Left: numerical integration of
∫∞
0

e−x2
dx.

Right: solving the ODE dy/dt = −2y, y(0) = 1.

19.3 Interpolation (scipy.interpolate)

Construct interpolating functions from data.
1 from scipy import interpolate
2 import numpy as np
3

4 x = np.linspace(0, 10, 5)
5 y = np.sin(x)
6 f = interpolate.interp1d(x, y, kind="cubic")
7

8 print(f(5.5)) # evaluate interpolation

Figure 34: Interpolation with scipy.interpolate.interp1d. The original data points
(red) are smoothly connected using a cubic spline.
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19.4 Statistics (scipy.stats)

Large collection of probability distributions and statistical tests.

1 from scipy import stats
2

3 rv = stats.norm(loc=0, scale =1) # normal distribution
4 print(rv.pdf (0)) # density at 0
5 print(rv.cdf (1.96)) # cumulative probability

Figure 35: Normal distribution with scipy.stats.norm. Left: probability density func-
tion (PDF). Right: cumulative distribution function (CDF). More details will be presented
next semester during the Probability and Statistics course.

19.5 Sparse Matrices (scipy.sparse)

Efficient storage and operations with sparse matrices.

1 from scipy import sparse
2 import numpy as np
3

4 A = sparse.csr_matrix ([[0, 0, 1],
5 [1, 0, 0],
6 [0, 2, 0]])
7 print(A)

Output:

<Compressed Sparse Row sparse matrix of dtype ’int64’
with 3 stored elements and shape (3, 3)>

Coords Values
(0, 2) 1
(1, 0) 1
(2, 1) 2
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Figure 36: Dense vs sparse representation. Left: full matrix with many zeros. Right:
sparse format only stores nonzero entries, saving memory and speeding up computations.

19.6 Signal and Image Processing

Basic tools for filtering and transforms.
1 from scipy import signal
2

3 b, a = signal.butter(3, 0.3) # low -pass filter
4 print(b, a)

1 from scipy import ndimage
2 import numpy as np
3

4 image = np.random.rand (5,5)
5 blurred = ndimage.gaussian_filter(image , sigma =1)
6 print(blurred)

Figure 37: scipy.signal (left): filtering a noisy signal with a Butterworth low-pass filter.
scipy.ndimage (right): applying a Gaussian blur to an image. Theoretical background
(filters, Fourier, image processing) will be covered later.
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Part IV

Plotting and Visualization with
Matplotlib
20 Introduction to Matplotlib
PS. This part is meant only as an introductory overview . We will encounter Matplotlib
repeatedly during the semester, whenever we need visualization for data analysis, numer-
ical methods, or scientific results. Here, the goal is simply to learn the basic workflow of
producing plots, so that visual feedback becomes a natural part of our experiments.

20.1 Why visualization?

In numerical computing, visualization serves several purposes:

• Exploration: understanding the shape of data, detecting patterns or anomalies.

• Verification: checking if numerical algorithms behave as expected.

• Communication: presenting results in a clear and intuitive form.

Matplotlib is the standard plotting library in Python. It is mature, flexible, and
integrates directly with NumPy and SciPy. With Matplotlib, we can produce:

• simple line plots,

• multiple curves on the same axes,

• scatter plots, bar charts, histograms, pie charts,

• heatmaps and images,

• even 3D visualizations.

20.2 The Pyplot interface

The most common entry point is the matplotlib.pyplot interface, imported as:

1 import matplotlib.pyplot as plt

This interface works in a state-machine style, similar to MATLAB: calling functions
like plt.plot, plt.title, or plt.show affects the current figure and axes.

For advanced use, Matplotlib also has an object-oriented API (creating explicit Figure
and Axes objects). We will briefly see both approaches, but for now we focus on the
simpler Pyplot workflow.
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20.3 A first plot

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Sample data: sine wave on [0, 2 ]
5 x = np.linspace(0, 2*np.pi, 200)
6 y = np.sin(x)
7

8 # Create plot
9 plt.plot(x, y)

10

11 # Add decorations
12 plt.title("Sine wave")
13 plt.xlabel("x")
14 plt.ylabel("sin(x)")
15

16 # Display on screen
17 plt.show()

Figure 38: First plot with Matplotlib: sine function on [0, 2π].

This shows the basic workflow:

1. Prepare data using NumPy.

2. Call a plotting function (here plt.plot).

3. Add titles, labels, legends, gridlines as needed.

4. Display with plt.show() or save with plt.savefig("file.png").
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20.4 Saving figures

Plots can be saved directly to disk in many formats (PNG, PDF, SVG, EPS).

1 plt.savefig("sine.png", dpi =150) # save with resolution 150 dpi

This is especially useful for including results in reports or LaTeX documents.

20.5 Multiple plots on the same axes

We can call plt.plot several times to overlay multiple curves.

1 x = np.linspace(0, 2*np.pi, 200)
2

3 plt.plot(x, np.sin(x), label="sin(x)")
4 plt.plot(x, np.cos(x), label="cos(x)")
5

6 plt.title("Trigonometric functions")
7 plt.xlabel("x")
8 plt.ylabel("value")
9 plt.legend ()

10 plt.grid(True)
11

12 plt.show()

Figure 39: Sine and cosine plotted together, with legend and grid.

20.6 Figures and subplots

Each figure can contain one or more subplots. This allows structured layouts for comparing
results.
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1 fig , axs = plt.subplots(2, 2, figsize =(8 ,6))
2

3 x = np.linspace(0, 2*np.pi, 200)
4

5 axs[0,0]. plot(x, np.sin(x))
6 axs[0,0]. set_title("sin(x)")
7

8 axs[0,1]. plot(x, np.cos(x))
9 axs[0,1]. set_title("cos(x)")

10

11 axs[1,0]. plot(x, np.sin(2*x))
12 axs[1,0]. set_title("sin(2x)")
13

14 axs[1,1]. plot(x, np.cos(2*x))
15 axs[1,1]. set_title("cos(2x)")
16

17 plt.tight_layout ()
18 plt.show()

Figure 40: Using subplots to create a grid of multiple plots within one figure.
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21 Basic Plotting Styles
Once we know how to make a simple line plot, the next step is to customize its appearance.
Matplotlib offers fine control over colors, line styles, markers, grids, and axis labels.

21.1 Colors and line styles

We can specify colors and styles directly in plt.plot(). Common line styles:

• ’-’ solid line,

• ’–’ dashed line,

• ’:’ dotted line,

• ’-.’ dash-dot line.

Common color codes: ’b’ (blue), ’r’ (red), ’g’ (green), ’k’ (black), ’m’ (magenta),
’c’ (cyan), ’y’ (yellow).

1 x = np.linspace(0, 2*np.pi, 200)
2

3 plt.plot(x, np.sin(x), ’r--’, label="sin(x), dashed red")
4 plt.plot(x, np.cos(x), ’b:’, label="cos(x), dotted blue")
5

6 plt.legend ()
7 plt.show()

Figure 41: Customizing line styles in Matplotlib. Here, sin(x) is plotted as a dashed red
line, while cos(x) is plotted as a dotted blue line.
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21.2 Markers

We can add markers to emphasize data points. Examples: ’o’ (circle), ’s’ (square), ˆ
(triangle), ’x’ (cross).

1 x = np.linspace(0, 2*np.pi, 8)
2

3 plt.plot(x, np.sin(x), ’bo-’, label="sin(x) with circles")
4 plt.plot(x, np.cos(x), ’gs--’, label="cos(x) with squares")
5

6 plt.legend ()
7 plt.show()

Figure 42: Customizing markers in Matplotlib. Here, sin(x) is plotted with circular
markers (blue solid line), while cos(x) is plotted with square markers (green dashed
line).

21.3 Axis limits and ticks

We can adjust the visible region of the plot with xlim and ylim.

1 x = np.linspace (-2*np.pi, 2*np.pi, 200)
2 y = np.sin(x)
3

4 plt.plot(x, y)
5 plt.xlim(0, 2*np.pi)
6 plt.ylim(-1.5, 1.5)
7 plt.show()
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Figure 43: Basic plot in Matplotlib: plotting sin(x) with default settings. This illustrates
the simplest use of plt.plot without extra formatting.

Custom ticks can be set with xticks and yticks.

1 plt.plot(x, y)
2 plt.xticks ([0, np.pi, 2*np.pi],
3 [r"$0$", r"$\pi$", r"$2\pi$"])
4 plt.show()

Figure 44: Customizing ticks and labels in Matplotlib. Here the x-axis is labeled using
multiples of π, which makes trigonometric functions easier to interpret.
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21.4 Grids and labels

Adding gridlines helps reading the values.
Labels can contain LaTeX math expressions.

1 plt.plot(x, y, label=r"$\sin(x)$")
2 plt.xlabel(r"$x$")
3 plt.ylabel(r"$y$")
4 plt.title("Sine function")
5 plt.grid(True)
6 plt.legend ()
7 plt.show()

Figure 45: Adding titles, axis labels, limits, grid, and legend in Matplotlib. This makes
the plot much more readable and informative.
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22 Scatter Plots
Scatter plots visualize the relationship between two variables. Each point corresponds to
one observation with coordinates (x, y).

22.1 Basic scatter plot

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 x = np.linspace(0, 10, 30)
5 y = np.sin(x) + 0.1*np.random.randn (30)
6

7 plt.scatter(x, y)
8 plt.xlabel("x")
9 plt.ylabel("y")

10 plt.title("Scatter plot: noisy sine values")
11 plt.show()

Figure 46: Scatter plot of a sine function with added noise.

22.2 Comparing two datasets

Scatter plots can show multiple datasets together.

1 np.random.seed (0)
2 x1 = np.random.normal(0, 1, 30)
3 y1 = np.random.normal(0, 1, 30)
4

5 x2 = np.random.normal(2, 1, 30)
6 y2 = np.random.normal(2, 1, 30)
7

8 plt.scatter(x1 , y1, label="Cluster A")
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9 plt.scatter(x2 , y2, label="Cluster B")
10 plt.legend ()
11 plt.title("Two clusters in 2D")
12 plt.show()

Figure 47: Scatter plot showing two clusters (blue and orange).

Colors, sizes, and transparency. Extra dimensions can be encoded in scatter plots:

• position (x, y),

• color (variable c),

• size (variable s),

• transparency (alpha).

1 x = np.random.rand (50)
2 y = np.random.rand (50)
3 c = x**2 + y**2 # color: distance from origin
4 s = 400 * (x+y) # size: depends on sum
5

6 plt.scatter(x, y, c=c, s=s, cmap="viridis", alpha =0.6)
7 plt.colorbar(label="distance ^2")
8 plt.title("Scatter plot with color and size encoding")
9 plt.show()
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Figure 48: Scatter plot encoding multiple variables. Position (x, y), color (distance from
origin), and size (based on x+ y).

22.3 Scatter plot with colormap

In addition to manually setting colors, we can use a colormap to assign colors automat-
ically based on numerical values (as we did in the last example). A colormap maps scalar
values (e.g., between 0 and 100) to colors in a gradient. This is very useful when we want
to highlight the relationship between a third variable and the (x, y) positions.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # generate random data
5 np.random.seed (0)
6 x = np.random.rand (50)
7 y = np.random.rand (50)
8 values = np.sqrt(x**2 + y**2) * 100 # third variable: distance from origin
9

10 plt.scatter(x, y, c=values , cmap="viridis")
11 plt.colorbar(label="Distance from origin")
12 plt.title("Scatter plot with colormap")
13 plt.xlabel("x")
14 plt.ylabel("y")
15 plt.show()
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Figure 49: Scatter plot using a colormap (“viridis”). Each point’s color represents its
distance from the origin.
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23 Bar plots
Bar plots are used to represent categorical data with rectangular bars. The length (or
height) of each bar is proportional to the value it represents. With pyplot, the function
bar() draws vertical bars, while barh() draws horizontal ones.

23.1 Basic bar plot

Simple bar plot with categories on the x-axis and values on the y-axis:

1 import matplotlib.pyplot as plt
2

3 categories = ["A", "B", "C", "D"]
4 values = [3, 7, 5, 2]
5

6 plt.bar(categories , values)
7 plt.title("Basic bar plot")
8 plt.xlabel("Categories")
9 plt.ylabel("Values")

10 plt.show()

Figure 50: Basic bar plot with categories A–D.

23.2 Horizontal bar plot

One can also draw horizontal bars using barh():

1 plt.barh(categories , values , color="orange")
2 plt.title("Horizontal bar plot")
3 plt.xlabel("Values")
4 plt.ylabel("Categories")
5 plt.show()
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Figure 51: Horizontal bar plot with categories A–D in orange.

23.3 Grouped bar plot

It is often useful to compare two sets of values across the same categories. This is done
with grouped bar plots by shifting the bar positions:

1 import numpy as np
2

3 categories = ["A", "B", "C", "D"]
4 values1 = [3, 7, 5, 2]
5 values2 = [4, 6, 4, 3]
6 x = np.arange(len(categories ))
7

8 plt.bar(x - 0.2, values1 , width =0.4, label="Group 1")
9 plt.bar(x + 0.2, values2 , width =0.4, label="Group 2")

10 plt.xticks(x, categories)
11 plt.title("Grouped bar plot")
12 plt.legend ()
13 plt.show()
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Figure 52: Grouped bar plot: categories A–D with two groups shown side by side.

23.4 Customization

Bars can be customized with different colors, widths, and edge styles. For example:

1 plt.bar(categories , values , color="skyblue", edgecolor="black", linewidth =1.2)
2 plt.title("Customized bar plot")
3 plt.show()

Figure 53: Customized bar plot: bars with skyblue fill and black edges.
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24 Histograms
A histogram is a graphical representation of the distribution of numerical data. It works
by dividing the range of the data into bins (intervals) and then counting how many data
points fall into each bin. The result is similar to a bar plot, but with a continuous x-axis.
The height of each bar shows the frequency (or probability, if normalized) of observations
in that bin.

In matplotlib, histograms can be created using the function plt.hist().

24.1 Classic histrogram

We can create a histogram for 1000 values sampled from a normal distribution. Here we
use 30 bins, and customize the color of the bars.

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # Generate 1000 samples from a normal distribution
5 data = np.random.randn (1000)
6

7 # Create histogram with 30 bins
8 plt.hist(data , bins=30, color="green", edgecolor="black")
9 plt.title("Histogram of normal distribution")

10 plt.xlabel("Value")
11 plt.ylabel("Frequency")
12 plt.show()

Figure 54: Histogram of 1000 normally distributed values with 30 bins.

24.2 Probability density.

By default, the histogram shows the frequency of values. If we want instead to show
the probability density, we can use the argument density=True. In this case, the total
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area under the histogram equals 1, making it easier to compare with probability density
functions (PDFs).

1 plt.hist(data , bins=30, density=True , color="lightgreen", edgecolor="black")
2 plt.title("Normalized histogram (probability density)")
3 plt.xlabel("Value")
4 plt.ylabel("Density")
5 plt.show()

Figure 55: Normalized histogram (density=True) of 1000 normally distributed values.

Advanced example: comparing two groups. Histograms are often used to compare
the distributions of two or more datasets. For example, suppose we measure the heights
of men and women in a population. We can generate synthetic data and compare them
in one figure using overlapping histograms.

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # Synthetic height data (in cm)
5 men_heights = np.random.normal(loc=175, scale=7, size =1000) # mean 175, std 7
6 women_heights = np.random.normal(loc=162, scale=6, size =1000) # mean 162, std 6
7

8 # Plot histograms on the same axes
9 plt.hist(men_heights , bins=30, alpha =0.6, color="blue", label="Men")

10 plt.hist(women_heights , bins=30, alpha =0.6, color="pink", label="Women")
11

12 plt.title("Comparison of Heights: Men vs Women")
13 plt.xlabel("Height (cm)")
14 plt.ylabel("Frequency")
15 plt.legend ()
16 plt.grid(True)
17 plt.show()
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Figure 56: Two overlapping histograms with transparency: blue for men (centered at
∼ 175 cm) and pink for women (centered at ∼ 162 cm).

105



25 Stack plots (area plots)
Stack plots, also known as area plots, are used to show how multiple quantities evolve
over the same range, stacked on top of each other. They are particularly useful when we
want to visualize the contribution of each category to the total over time.

In matplotlib, the function plt.stackplot() creates such plots. It takes the x values
(e.g., time or categories) and multiple y-series, which are then stacked.

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # x-axis: time (days)
5 days = np.arange(1, 8)
6

7 # example data: hours spent by a student
8 sleep = [7, 8, 6, 7, 8, 9, 8]
9 study = [2, 3, 4, 3, 2, 4, 3]

10 exercise= [1, 1, 1, 1, 2, 1, 1]
11 leisure = [4, 3, 4, 5, 4, 3, 5]
12

13 # stack plot
14 plt.stackplot(days , sleep , study , exercise , leisure ,
15 labels =["Sleep","Study","Exercise","Leisure"],
16 colors =["skyblue","orange","green","violet"],
17 alpha =0.8)
18

19 plt.legend(loc="upper left")
20 plt.title("Daily activities over one week")
21 plt.xlabel("Day")
22 plt.ylabel("Hours")
23 plt.show()

Figure 57: Stack plot of a student’s activities during one week: sleep, study, exercise, and
leisure time stacked together.
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26 Pie charts
Pie charts are a common way to visualize proportions of a whole. Each slice of the
circle corresponds to a category, and the angle of the slice is proportional to its percentage
of the total. They are useful when we want to emphasize how different parts contribute
to the overall sum.

Matplotlib provides the function plt.pie() to generate pie charts. The essential input
is a list of values (one for each category). Optional arguments allow us to customize the
chart with colors, labels, percentages, and even highlight specific slices.

26.1 Basic example

We start with a very simple pie chart showing the distribution of time in one day across
different activities.

1 import matplotlib.pyplot as plt
2

3 # Daily activities in hours
4 activities = ["Sleep", "Study", "Exercise", "Leisure", "Other"]
5 hours = [8, 4, 2, 6, 4]
6

7 plt.pie(hours , labels=activities)
8 plt.title("Basic daily activities distribution")
9 plt.show()

Figure 58: Basic pie chart of daily activities.

26.2 Adding percentages and colors

We can use the autopct argument to display percentages on each slice, and the colors
argument to manually select colors.

1 colors = ["skyblue", "orange", "green", "violet", "gray"]
2

3 plt.pie(hours ,
4 labels=activities ,
5 colors=colors ,
6 autopct="%1.1f%%", # show percentages
7 startangle =90 # rotate chart for better readability
8 )
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9 plt.title("Daily activities distribution")
10 plt.show()

Figure 59: Pie chart showing daily activities with percentages.

26.3 Highlighting one category (explode)

Sometimes we want to emphasize one category (e.g. Sleep) by pulling it out from the
chart.

1 explode = (0.1, 0, 0, 0, 0) # highlight "Sleep"
2

3 plt.pie(hours ,
4 labels=activities ,
5 colors=colors ,
6 autopct="%1.1f%%",
7 startangle =90,
8 explode=explode
9 )

10 plt.title("Daily activities with Sleep highlighted")
11 plt.show()

Figure 60: Pie chart with one slice (“Sleep”) emphasized using the explode option.
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26.4 Comparing two groups

Pie charts can also be used for comparison, though bar plots are usually better. Here we
show daily activity distributions for two different individuals side by side.

1 fig , axs = plt.subplots(1, 2, figsize =(8 ,4))
2

3 # Person A
4 hours_A = [7, 5, 1, 7, 4]
5 axs [0]. pie(hours_A , labels=activities , autopct="%1.0f%%")
6 axs [0]. set_title("Person A")
7

8 # Person B
9 hours_B = [8, 3, 2, 6, 5]

10 axs [1]. pie(hours_B , labels=activities , autopct="%1.0f%%")
11 axs [1]. set_title("Person B")
12

13 plt.suptitle("Comparison of daily activities")
14 plt.show()

Figure 61: Side-by-side comparison of daily activities for two individuals.
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