
Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich
Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 1

Dot-free notation:
Sequence (of vectors):

v1,v2, . . . ,vn = (v1,v2, . . . ,vn) = (vj)
n
j=1

n
j=1: “all j such that 1 ≤ j ≤ n, in increasing order”
n = 2 : (v1,v2)
n = 1 : (v1)
n = 0 : () (empty sequence)

Linear combination:

λ1v1 + λ2v2 + · · ·+ λnvn =
n∑

j=1

λjvj

n = 2 : λ1v1 + λ2v2

n = 1 : λ1v1

n = 0: 0 (without moving, we’re stuck at 0)

Set (of vectors):

{v1,v2, . . . ,vn} = {vj : j ∈ [n]}, [n] = {1, 2, . . . , n}

Vectors:
v1
v2
...
vm

 = [vi]
m
i=1 [0]6i=1 = 0 ∈ R6, [i2]5i=1 =


1
4
9
16
25

 , [vi]
0
i=1 = () ∈ R0

Scalar products, lengths and angles (Section 1.2)

Scalar product: multiply two vectors![
1
2

]
·
[
3
4

]
= 1 · 3 + 2 · 4 = 11.
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Definition 1.9: Let

v =


v1
v2
...
vm

 ,w =


w1

w2
...

wm

 ∈ Rm.

The scalar product of v and w is the number

v ·w := v1w1 + v2w2 + · · ·+ vmwm =
m∑
i=1

viwi.

Observation 1.10: Let u,v,w ∈ Rm be vectors and λ ∈ R a scalar. Then

(i) v ·w = w · v

(ii) (λv) ·w = λ(v ·w) = v · (λw)

(iii) u · (v +w) = u · v + u ·w and (u+ v) ·w = u ·w + v ·w

(iv) v · v ≥ 0, with equality exactly if v = 0

Euclidean norm: defines length of a vector
Definition 1.11: Let v ∈ Rm. The Euclidean norm of v is the number

∥v∥ :=
√
v · v.∥∥∥∥∥∥∥∥∥


v1
v2
...
vm


∥∥∥∥∥∥∥∥∥ =

√
v21 + v22 + · · ·+ v2m =

√√√√ m∑
i=1

v2i

∥∥∥∥[−42
]∥∥∥∥ =

√
(−4)2 + 22 =

√
20

In R2: arrow length (Pythagoras!)

v =

[
v1
v2

]

0

|v2|

|v1| 900

√
v21 + v22

Unit vector: ∥u∥ = 1.

0

vu

1 v
‖v‖
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For v ̸= 0, v
∥v∥ := 1

∥v∥v is a unit vector.

Standard unit vectors:

R3 : e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1

 Rm : ei =


0
...
1
...
0

← coordinate i

e1 =

10
0


e2 =

01
0


x

y

e3 =

00
1


z

Cauchy-Schwarz inequality (Proof and application in lecture notes):
Lemma 1.12: For any two vectors v,w ∈ Rm,

|v ·w| ≤ ∥v∥∥w∥.

Equality holds exactly if one vector is a scalar multiple of the other.
Angle between two vectors:

v

w
α

Definition 1.14: Let v,w ∈ Rm be two nonzero vectors. The angle between them is the
unique α between 0 and π (180 degrees) such that

cos(α) =
v ·w
∥v∥∥w∥︸ ︷︷ ︸
↑

, or α = arccos

(
v ·w
∥v∥∥w∥

)
.

between −1 and 1 by Cauchy-Schwarz

In R2: the usual angle

Perpendicular vectors:
Definition 1.15: Vectors v,w ∈ Rn are perpendicular (or orthogonal) if v · w = 0 (same as
cos(α) = 0, or 90 degrees).
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x

y [
4

2

][
−1

2

]
900

[
4
2

]
·
[
−1
2

]
= −4 · 1 + 2 · 2 = 0

Triangle inequality (proof from Cauchy-Schwarz):
Lemma 1.16: Let v,w ∈ Rm. Then

∥v +w∥ ≤ ∥v∥+ ∥w∥.
v

w

v +w

‖w‖‖v‖

‖v +w‖
0

‖w‖ ‖v‖

In R2: From 0 directly to v +w is shorter than via v or w.

Linear independence (Section 1.3)

Linear (in)dependence:
Definition 1.18: Vectors v1,v2, . . . ,vn are linearly dependent if at least one of them is a
linear combination of the others, i.e. there exists an index k ∈ [n] and scalars λj such that

vk =
n∑

j=1
j ̸=k

λjvj.

Otherwise, v1,v2, . . . ,vn are linearly independent.
“j < k”: an additional condition on j (all j except k).[
2
3

]
,

[
4
6

]
are linearly dependent:

[
4
6

]
= 2

[
2
3

]
.[

2
3

]
,

[
3
−1

]
are linearly independent.

x

y

[
2

3

]
[
4

6

]

0
x

y

[
2

3

]
[

3

−1

]0
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collinear linearly independent

Three vectors in R2 are linearly dependent: either two are collinear, or each is a linear
combination of the other two (Challenge 1.6).

linearly independent linearly dependent[
2
3

]
,

[
3
−1

]
[
2
3

]
,

[
4
6

]
v1,v2,v3 ∈ R2

v ̸= 0
v = 0

. . . ,0, . . .
. . . ,v, . . . ,v, . . .

empty sequence

Alternative definitions:
Lemma 1.19: Let v1,v2 . . . ,vn ∈ Rm. The following statements are equivalent (all true, or
all false).

(i) At least one of the vectors is a linear combination of the other ones (linearly depen-
dent by Definition 1.18).

(ii) There are scalars λ1, λ2, . . . , λn besides 0, 0, . . . , 0 such that
∑n

j=1 λjvj = 0. Math jar-
gon: 0 is a nontrivial linear combination of the vectors.

(iii) At least one of the vectors is a linear combination of the previous ones.

Proof idea:
(i) implies (ii): if (i) is true, then also (ii) is true. (i)⇒(ii)
(ii) implies (iii). (ii)⇒(iii)
(iii) implies (i). (iii)⇒(i)
Each statement implies the other ones! (i)⇔(ii)⇔(iii)
Math prose for (i)⇔(ii): (i) if and only if (ii)

Proof.
(i)⇒(ii): Let

vk =
n∑

j=1
j ̸=k

λjvj.

Define λk = −1. We get (ii):

0 =
n∑

j=1

λjvj.
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(ii)⇒(iii): Let k be the largest index such that λk ̸= 0. Then

0 =
k∑

j=1

λjvj

and we get (iii):

vk =
k−1∑
j=1

(
−λj

λk

)
vj.

(iii)⇒(i): a linear combination of the previous ones is also a linear combination of the
other ones.

For linear independence, simply take the opposite statements.
Corollary 1.20: Let v1,v2 . . . ,vn ∈ Rm. The following statements are equivalent (all true,
or all false).

(i) None of the vectors is a linear combination of the other ones (linearly independent
by Definition 1.18.)

(ii) There are no scalars λ1, λ2, . . . , λn besides 0, 0, . . . , 0 such that
∑n

j=1 λjvj = 0. Math
jargon: 0 can only be written as a trivial linear combination of the vectors.

(iii) None of the vectors is a linear combination of the previous ones.

Uniqueness of linear combination:
Lemma 1.21: Let v1,v2 . . . ,vn ∈ Rm be linearly independent, and let w =

∑n
j=1 λjvj =∑n

j=1 µjvj be two ways of writing w as a linear combination. Then λj = µj for all j ∈ [n].

Proof. Subtraction:

0 =
n∑

j=1

(λj − µj)vj.

Since 0 can only be written as a trivial linear combination, we get λj −µj = 0 for all j.

Span of vectors: set of all linear combinations
Definition 1.22: Let v1,v2, . . . ,vn ∈ Rm. Their span is

Span(v1,v2, . . . ,vn) :=

{
n∑

j=1

λjvj : λj ∈ R for all j ∈ [n]

}
.

Span of three vectors in R3:
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x

y

z

−2

2

2

 −1

1

1


−3

3

3



x

y

z

−2

2

0



−1

1

3



−3

3

3


x

y

z

−2

2

0



−1

1

3



 2

3

−1



a line a plane the whole space
. . . or a point (if all vectors are 0)

Always: 0 ∈ Span(. . .)
Fact 1.5:

Span

([
2
3

]
,

[
3
−1

])
= R2.

x

y

[
2

3

]
[
4

6

]

0
x

y

[
2

3

]
[

3

−1

]0

collinear linearly independent

Lemma 1.23: Let v1,v2 . . . ,vn ∈ Rm, and let v ∈ Rm be a linear combination of v1,v2 . . . ,vn.
Then

Span(v1,v2, . . . ,vn)︸ ︷︷ ︸
S

= Span(v1,v2, . . . ,vn,v)︸ ︷︷ ︸
T

.

Proof idea:
Each element of S is contained in T (S is subset of T ). S ⊆ T
T is subset of S. T ⊆ S
The two sets are equal! S = T
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Proof. S ⊆ T : Each w ∈ S is a linear combination of v1,v2, . . . ,vn and therefore of
v1,v2, . . . ,vn,v (add scalar multiple 0v). So w ∈ T .
T ⊆ S: each w ∈ T is a linear combination of v1,v2, . . . ,vn,v,

w =
n∑

j=1

λjvj + λv.

We know: v is a linear combination of v1,v2 . . . ,vn,

v =
n∑

j=1

µjvj.

Together:

w =
n∑

j=1

λjvj + λv =
n∑

j=1

λjvj + λ

(
n∑

j=1

µjvj

)
=

n∑
j=1

(λj + λµj)vj.

So w is a linear combination of v1,v2, . . . ,vn, w ∈ S.
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