Lecture plan Linear Algebra (401-0131-00L, HS24), ETH Zürich Numbering of Sections, Definitions, Figures, etc. as in the Lecture Notes

Week 1

Dot-free notation:

Sequence (of vectors):

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\mathbf{v}_j)_{j=1}^n$$

 $_{j=1}^{n}$: "all j such that $1 \le j \le n$, in increasing order" $n = 2 : (\mathbf{v}_1, \mathbf{v}_2)$ $n = 1 : (\mathbf{v}_1)$ n = 0 : () (empty sequence)

Linear combination:

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n = \sum_{j=1}^n \lambda_j \mathbf{v}_j$$

$$\begin{split} n &= 2: \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 \\ n &= 1: \lambda_1 \mathbf{v}_1 \\ n &= 0: \mathbf{0} \quad \text{(without moving, we're stuck at 0)} \end{split}$$

Set (of vectors):

$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} = \{\mathbf{v}_j : j \in [n]\}, \quad [n] = \{1, 2, \dots, n\}$$

Vectors:

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} = [v_i]_{i=1}^m \qquad [0]_{i=1}^6 = \mathbf{0} \in \mathbb{R}^6, \qquad [i^2]_{i=1}^5 = \begin{bmatrix} 1 \\ 4 \\ 9 \\ 16 \\ 25 \end{bmatrix}, \qquad [v_i]_{i=1}^0 = () \in \mathbb{R}^0$$

Scalar products, lengths and angles (Section 1.2)

Scalar product: multiply two vectors!

$$\begin{bmatrix} 1\\2 \end{bmatrix} \cdot \begin{bmatrix} 3\\4 \end{bmatrix} = 1 \cdot 3 + 2 \cdot 4 = 11.$$

Definition 1.9: Let

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}, \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} \in \mathbb{R}^m.$$

The scalar product of v and w is the number

$$\mathbf{v} \cdot \mathbf{w} := v_1 w_1 + v_2 w_2 + \dots + v_m w_m = \sum_{i=1}^m v_i w_i.$$

Observation 1.10: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^m$ be vectors and $\lambda \in \mathbb{R}$ a scalar. Then

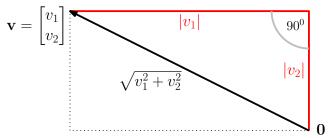
- (i) $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- (ii) $(\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda(\mathbf{v} \cdot \mathbf{w}) = \mathbf{v} \cdot (\lambda \mathbf{w})$
- (iii) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ and $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (iv) $\mathbf{v} \cdot \mathbf{v} \ge 0$, with equality exactly if $\mathbf{v} = \mathbf{0}$

Euclidean norm: defines length of a vector **Definition 1.11**: Let $\mathbf{v} \in \mathbb{R}^m$. The Euclidean norm of \mathbf{v} is the number

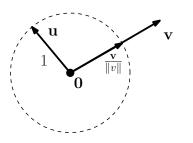
$$\|\mathbf{v}\| := \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

$$\left\| \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} \right\| = \sqrt{v_1^2 + v_2^2 + \dots + v_m^2} = \sqrt{\sum_{i=1}^m v_i^2} \qquad \left\| \begin{bmatrix} -4 \\ 2 \end{bmatrix} \right\| = \sqrt{(-4)^2 + 2^2} = \sqrt{20}$$

In \mathbb{R}^2 : arrow length (Pythagoras!)



Unit vector: $\|\mathbf{u}\| = 1$.



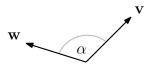
For $\mathbf{v} \neq \mathbf{0}$, $\frac{\mathbf{v}}{\|\mathbf{v}\|} := \frac{1}{\|\mathbf{v}\|}\mathbf{v}$ is a unit vector. Standard unit vectors:

$$\mathbb{R}^{3}: \mathbf{e}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{e}_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{e}_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad \mathbb{R}^{m}: \mathbf{e}_{i} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad \leftarrow \text{ coordinate } i$$
$$\mathbf{e}_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad \mathbf{e}_{3} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

Cauchy-Schwarz inequality (Proof and application in lecture notes): **Lemma 1.12**: For any two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^m$,

 $|\mathbf{v} \cdot \mathbf{w}| \le \|\mathbf{v}\| \|\mathbf{w}\|.$

Equality holds exactly if one vector is a scalar multiple of the other. **Angle** between two vectors:



Definition 1.14: Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^m$ be two nonzero vectors. The angle between them is the unique α between 0 and π (180 degrees) such that

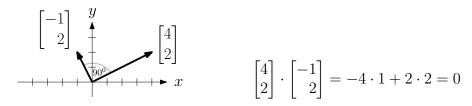
$$\cos(\alpha) = \underbrace{\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}}_{\uparrow}, \text{ or } \alpha = \arccos\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}\right).$$

between -1 and 1 by Cauchy-Schwarz

In \mathbb{R}^2 : the usual angle

Perpendicular vectors:

Definition 1.15: Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are *perpendicular* (or *orthogonal*) if $\mathbf{v} \cdot \mathbf{w} = 0$ (same as $\cos(\alpha) = 0$, or 90 degrees).



Triangle inequality (proof from Cauchy-Schwarz): **Lemma 1.16**: Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^m$. Then



In \mathbb{R}^2 : From 0 directly to $\mathbf{v} + \mathbf{w}$ is shorter than via \mathbf{v} or \mathbf{w} .

Linear independence (Section 1.3)

Linear (in)dependence:

Definition 1.18: Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are *linearly dependent* if at least one of them is a linear combination of the others, i.e. there exists an index $k \in [n]$ and scalars λ_j such that

$$\mathbf{v}_k = \sum_{\substack{j=1\\j\neq k}}^n \lambda_j \mathbf{v}_j.$$

collinear

linearly independent

Three vectors in \mathbb{R}^2 are linearly dependent: either two are collinear, or each is a linear combination of the other two (Challenge 1.6).

linearly independent	linearly dependent
$\begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 3\\-1 \end{bmatrix}$	
	$\begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 4\\6 \end{bmatrix}$
	$\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^2$
$\mathbf{v} eq 0$	
	$\mathbf{v} = 0$
	, 0 ,
	$\ldots, \mathbf{v}, \ldots, \mathbf{v}, \ldots$
empty sequence	

Alternative definitions:

Lemma 1.19: Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in \mathbb{R}^m$. The following statements are *equivalent* (all true, or all false).

- (i) At least one of the vectors is a linear combination of the other ones (linearly dependent by Definition 1.18).
- (ii) There are scalars $\lambda_1, \lambda_2, ..., \lambda_n$ besides 0, 0, ..., 0 such that $\sum_{j=1}^n \lambda_j \mathbf{v}_j = \mathbf{0}$. Math jargon: **0** is a *nontrivial linear combination* of the vectors.
- (iii) At least one of the vectors is a linear combination of the previous ones.

Proof idea:(i) implies (ii): if (i) is true, then also (ii) is true.(i) \Rightarrow (ii)(ii) implies (ii).(ii) \Rightarrow (iii)(iii) implies (i).(iii) \Rightarrow (i)Each statement implies the other ones!(i) \Leftrightarrow (ii) \Leftrightarrow (ii)Math prose for (i) \Leftrightarrow (ii):(i) if and only if (ii)

Proof. (i) \Rightarrow (ii): Let

$$\mathbf{v}_k = \sum_{\substack{j=1\\j\neq k}}^n \lambda_j \mathbf{v}_j.$$

Define $\lambda_k = -1$. We get (ii):

$$\mathbf{0} = \sum_{j=1}^n \lambda_j \mathbf{v}_j.$$

(ii) \Rightarrow (iii): Let *k* be the largest index such that $\lambda_k \neq 0$. Then

$$\mathbf{0} = \sum_{j=1}^{\kappa} \lambda_j \mathbf{v}_j$$

and we get (iii):

$$\mathbf{v}_k = \sum_{j=1}^{k-1} \left(-\frac{\lambda_j}{\lambda_k} \right) \mathbf{v}_j.$$

(iii) \Rightarrow (i): a linear combination of the previous ones is also a linear combination of the other ones.

For linear independence, simply take the opposite statements.

Corollary 1.20: Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in \mathbb{R}^m$. The following statements are equivalent (all true, or all false).

- (i) None of the vectors is a linear combination of the other ones (linearly independent by Definition 1.18.)
- (ii) There are no scalars $\lambda_1, \lambda_2, ..., \lambda_n$ besides 0, 0, ..., 0 such that $\sum_{j=1}^n \lambda_j \mathbf{v}_j = \mathbf{0}$. Math jargon: **0** can only be written as a *trivial linear combination* of the vectors.
- (iii) None of the vectors is a linear combination of the previous ones.

Uniqueness of linear combination:

Lemma 1.21: Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathbb{R}^m$ be linearly independent, and let $\mathbf{w} = \sum_{j=1}^n \lambda_j \mathbf{v}_j = \sum_{j=1}^n \mu_j \mathbf{v}_j$ be two ways of writing \mathbf{w} as a linear combination. Then $\lambda_j = \mu_j$ for all $j \in [n]$.

Proof. Subtraction:

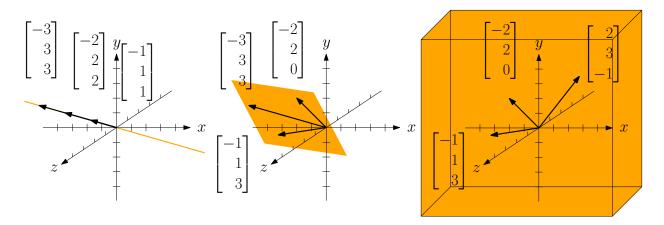
$$\mathbf{0} = \sum_{j=1}^{n} (\lambda_j - \mu_j) \mathbf{v}_j.$$

Since 0 can only be written as a trivial linear combination, we get $\lambda_j - \mu_j = 0$ for all *j*. \Box

Span of vectors: set of all linear combinations **Definition 1.22**: Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathbb{R}^m$. Their *span* is

$$\mathbf{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) := \left\{ \sum_{j=1}^n \lambda_j \mathbf{v}_j : \lambda_j \in \mathbb{R} \text{ for all } j \in [n] \right\}.$$

Span of three vectors in \mathbb{R}^3 :

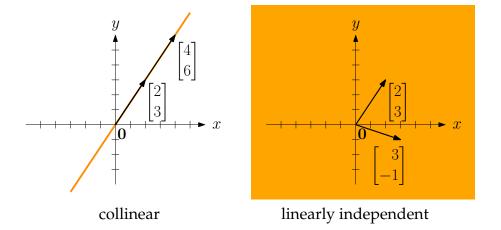


a plane a line ... or a point (if all vectors are 0)

the whole space

Always: $\mathbf{0} \in \mathbf{Span}(\ldots)$ Fact 1.5:

$$\mathbf{Span}\left(\begin{bmatrix}2\\3\end{bmatrix}, \begin{bmatrix}3\\-1\end{bmatrix}\right) = \mathbb{R}^2$$



Lemma 1.23: Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in \mathbb{R}^m$, and let $\mathbf{v} \in \mathbb{R}^m$ be a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Then

$$\underbrace{\mathbf{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)}_{S} = \underbrace{\mathbf{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n,\mathbf{v})}_{T}.$$

Proof idea: $\begin{array}{l} S \subseteq T \\ T \subseteq S \\ S = T \end{array}$ Each element of S is contained in T (S is *subset* of T). T is subset of S. The two sets are equal!

Proof. $S \subseteq T$: Each $\mathbf{w} \in S$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ and therefore of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \mathbf{v}$ (add scalar multiple $0\mathbf{v}$). So $\mathbf{w} \in T$. $T \subseteq S$: each $\mathbf{w} \in T$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \mathbf{v}_n$

$$\mathbf{w} = \sum_{j=1}^n \lambda_j \mathbf{v}_j + \lambda \mathbf{v}.$$

We know: \mathbf{v} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$,

$$\mathbf{v} = \sum_{j=1}^n \mu_j \mathbf{v}_j.$$

Together:

$$\mathbf{w} = \sum_{j=1}^{n} \lambda_j \mathbf{v}_j + \lambda \mathbf{v} = \sum_{j=1}^{n} \lambda_j \mathbf{v}_j + \lambda \left(\sum_{j=1}^{n} \mu_j \mathbf{v}_j\right) = \sum_{j=1}^{n} (\lambda_j + \lambda \mu_j) \mathbf{v}_j.$$

So w is a linear combination of $v_1, v_2, \ldots, v_n, w \in S$.